Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 4, Pages 779–795
DOI: https://doi.org/10.4213/tvp5609
(Mi tvp5609)
 

This article is cited in 4 scientific papers (total in 5 papers)

On one limit theorem for branching random walks

N. V. Smorodinaabc, E. B. Yarovayadc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
d Lomonosov Moscow State University
References:
Abstract: The foundations of the general theory of Markov random processes were laid by A. N. Kolmogorov. Such processes include, in particular, branching random walks on lattices $\mathbf{Z}^d$, $d \in \mathbf{N}$. In the present paper, we consider a branching random walk where particles may die or produce descendants at any point of the lattice. Motion of each particle on $\mathbf{Z}^d$ is described by a symmetric homogeneous irreducible random walk. It is assumed that the branching rate of particles at $x \in \mathbf{Z}^d$ tends to zero as $\|x\| \to \infty$, and that an additional condition on the parameters of the branching random walk, which gives that the mean population size of particles at each point $\mathbf{Z}^d$ grows exponentially in time, is met. In this case, the walk generation operator in the right-hand side of the equation for the mean population size of particles undergoes a perturbation due to possible generation of particles at points $\mathbf{Z}^d$. Equations of this kind with perturbation of the diffusion operator in $\mathbf{R}^2$, which were considered by Kolmogorov, Petrovsky, and Piskunov in 1937, continue being studied using the theory of branching random walks on discrete structures. Under the above assumptions, we prove a limit theorem on mean-square convergence of the normalized number of particles at an arbitrary fixed point of the lattice as $t\to\infty$.
Keywords: branching random walk, the Kolmogorov equations, martingale, limit theorems.
Funding agency Grant number
Russian Science Foundation 23-11-00375
Received: 17.05.2023
Accepted: 30.06.2023
English version:
Theory of Probability and its Applications, 2024, Volume 68, Issue 4, Pages 630–642
DOI: https://doi.org/10.1137/S0040585X97T991672
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Smorodina, E. B. Yarovaya, “On one limit theorem for branching random walks”, Teor. Veroyatnost. i Primenen., 68:4 (2023), 779–795; Theory Probab. Appl., 68:4 (2024), 630–642
Citation in format AMSBIB
\Bibitem{SmoYar23}
\by N.~V.~Smorodina, E.~B.~Yarovaya
\paper On one limit theorem for branching random walks
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 4
\pages 779--795
\mathnet{http://mi.mathnet.ru/tvp5609}
\crossref{https://doi.org/10.4213/tvp5609}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 68
\issue 4
\pages 630--642
\crossref{https://doi.org/10.1137/S0040585X97T991672}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185294883}
Linking options:
  • https://www.mathnet.ru/eng/tvp5609
  • https://doi.org/10.4213/tvp5609
  • https://www.mathnet.ru/eng/tvp/v68/i4/p779
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :4
    References:39
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024