Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2024, Volume 69, Issue 1, Pages 46–75
DOI: https://doi.org/10.4213/tvp5588
(Mi tvp5588)
 

This article is cited in 2 scientific papers (total in 2 papers)

Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process

Yu. Yu. Linke, I. S. Borisov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Let $f_1(t), \dots, f_n(t)$ be independent copies of some a.s. continuous stochastic process $f(t)$, $t\in[0,1]$, which are observed with noise. We consider the problem of nonparametric estimation of the mean function $\mu(t) = \mathbf{E}f(t)$ and of the covariance function $\psi(t,s)=\operatorname{Cov}\{f(t),f(s)\}$ if the noise values of each of the copies $f_i(t)$, $i=1,\dots,n$, are observed in some collection of generally random (in general) time points (regressors). Under wide assumptions on the time points, we construct uniformly consistent kernel estimators for the mean and covariance functions both in the case of sparse data (where the number of observations for each copy of the stochastic process is uniformly bounded) and in the case of dense data (where the number of observations at each of $n$ series is increasing as $n\to\infty$). In contrast to the previous studies, our kernel estimators are universal with respect to the structure of time points, which can be either fixed rather than necessarily regular, or random rather than necessarily formed of independent or weakly dependent random variables.
Keywords: nonparametric regression, estimator of the mean function, estimator of the covariance function, kernel estimator, uniform consistency.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2024-0001
Received: 06.07.2022
Revised: 12.01.2023
Accepted: 22.02.2023
English version:
Theory of Probability and its Applications, 2024, Volume 69, Issue 1, Pages 35–58
DOI: https://doi.org/10.1137/S0040585X97T991738
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. Yu. Linke, I. S. Borisov, “Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process”, Teor. Veroyatnost. i Primenen., 69:1 (2024), 46–75; Theory Probab. Appl., 69:1 (2024), 35–58
Citation in format AMSBIB
\Bibitem{LinBor24}
\by Yu.~Yu.~Linke, I.~S.~Borisov
\paper Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 1
\pages 46--75
\mathnet{http://mi.mathnet.ru/tvp5588}
\crossref{https://doi.org/10.4213/tvp5588}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 1
\pages 35--58
\crossref{https://doi.org/10.1137/S0040585X97T991738}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85164672068}
Linking options:
  • https://www.mathnet.ru/eng/tvp5588
  • https://doi.org/10.4213/tvp5588
  • https://www.mathnet.ru/eng/tvp/v69/i1/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :4
    Russian version HTML:4
    References:32
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024