Abstract:
Consider the random process $Y(t)=at-\nu_+(pt)+\nu_-(-qt)$, $t\in(-\infty,\infty)$, where $\nu_{\pm}(t)$ are independent standard Poisson processes for $t\geqslant 0$ and $\nu_{\pm}(t)=0$ for $t<0$. The parameters $a$, $p$, and $q$ are such that $\mathbf{E}Y(t)<0$, $t\neq0$. We evaluate the sums $\varphi_m(z,r)=\sum_{k\geq0}(re^{-r})^{k}(z+k)^{m+k-1}/k!$,
$m=1,2,\dots$, $z\geq0$, of function series with parameter $ r\in(0,1) $.
These series are used for recursive evaluation of the moments
$\mathbf{E}(t^*)^m$, $m\geq 1$, for the time $t^*$ when the trajectory of
the process $Y(t)$ attains its maximum value. The results obtained are
applied to the problem of estimating the parameter $\theta$ from $n$
observations with density $f(x,\theta)$, which has a jump at the point
$x=x(\theta)$, $x'(\theta)\neq 0$. If $\widehat\theta_n$ is a maximum
likelihood estimator for the true parameter $\theta_0$, then the limit distribution as $n\to\infty$ for the normalized estimators $n(\widehat\theta_n-\theta_0)$ is the distribution of the argument of the maximum $t^*_{\theta_0}$ of the trajectory of the process $Y(t)$ with parameters $a$, $p$, and $q$, which depend on both the one-sided limits of the density at the point $x(\theta_0)$ and the derivative $x'(\theta_0)$. In this case, by
evaluating the moments $\mathbf{E}(t^*_{\theta_0})^m$, $m=1, 2$, one can
estimate both the asymptotic bias for the maximum likelihood estimator and
its efficiency.
Keywords:Poisson process with linear drift, sum of functional parametric series,
statistic estimation of a jump point of distribution density.
Citation:
V. E. Mosyagin, “Poisson process with linear drift and related function series”, Teor. Veroyatnost. i Primenen., 69:2 (2024), 354–368; Theory Probab. Appl., 69:2 (2024), 281–293
\Bibitem{Mos24}
\by V.~E.~Mosyagin
\paper Poisson process with linear drift and related function series
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 2
\pages 354--368
\mathnet{http://mi.mathnet.ru/tvp5580}
\crossref{https://doi.org/10.4213/tvp5580}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 2
\pages 281--293
\crossref{https://doi.org/10.1137/S0040585X97T99191X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85202566369}