Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 4, Pages 691–704
DOI: https://doi.org/10.4213/tvp5559
(Mi tvp5559)
 

On the symmetrized chi-square tests in autoregression with outliers in data

M. V. Boldin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A linear stationary model $\mathrm{AR}(p)$ with unknown expectation, coefficients, and the distribution function of innovations $G(x)$ is considered. Autoregression observations contain gross errors (outliers, contaminations). The distribution of contaminations $\Pi$ is unknown, their intensity is $\gamma n^{-1/2}$ with unknown $\gamma$, and $n$ is the number of observations. The main problem here (among others) is to test the hypothesis on the normality of innovations $\boldsymbol H_{\Phi}\colon G (x)\in \{\Phi(x/\theta),\,\theta>0\}$, where $\Phi(x)$ is the distribution function of the normal law $\boldsymbol N(0,1)$. In this setting, the previously constructed tests for autoregression with zero expectation do not apply. As an alternative, we propose special symmetrized chi-square type tests. Under the hypothesis and $\gamma=0$, their asymptotic distribution is free. We study the asymptotic power under local alternatives in the form of the mixture $G(x)=A_{n,\Phi}(x):=(1-n^{-1/2})\Phi(x/\theta_0)+n^{-1/2}H(x)$, where $H(x)$ is a distribution function, and $\theta_0^2$ is the unknown variance of the innovations under $\boldsymbol H_{\Phi}$. The asymptotic qualitative robustness of the tests is established in terms of equicontinuity of the family of limit powers (as functions of $\gamma$, $\Pi,$ and $H(x)$) relative to $\gamma$ at the point $\gamma=0$.
Keywords: autoregression, outliers, residuals, empirical distribution function, chi-square test, local alternatives, robustness.
Received: 16.02.2022
Accepted: 29.03.2022
English version:
Theory of Probability and its Applications, 2024, Volume 68, Issue 4, Pages 559–569
DOI: https://doi.org/10.1137/S0040585X97T991623
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Boldin, “On the symmetrized chi-square tests in autoregression with outliers in data”, Teor. Veroyatnost. i Primenen., 68:4 (2023), 691–704; Theory Probab. Appl., 68:4 (2024), 559–569
Citation in format AMSBIB
\Bibitem{Bol23}
\by M.~V.~Boldin
\paper On the symmetrized chi-square tests in autoregression with outliers in data
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 4
\pages 691--704
\mathnet{http://mi.mathnet.ru/tvp5559}
\crossref{https://doi.org/10.4213/tvp5559}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 68
\issue 4
\pages 559--569
\crossref{https://doi.org/10.1137/S0040585X97T991623}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185270596}
Linking options:
  • https://www.mathnet.ru/eng/tvp5559
  • https://doi.org/10.4213/tvp5559
  • https://www.mathnet.ru/eng/tvp/v68/i4/p691
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :2
    References:31
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024