Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 3, Pages 421–442
DOI: https://doi.org/10.4213/tvp5553
(Mi tvp5553)
 

This article is cited in 2 scientific papers (total in 2 papers)

Stable random variables with complex stability index, I

I. A. Alekseevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (463 kB) Citations (2)
References:
Abstract: The present paper is the first part of a work on stable distributions with a complex stability index. We construct complex-valued random variables (r.v.'s) satisfying the usual stability condition but for a complex parameter $\alpha$ such that $|\alpha-1|<1$. We find the characteristic functions (ch.f.'s) of the r.v.'s thus obtained and prove that their distributions are infinitely divisible. It is also shown that the stability condition characterizes this class of stable r.v.'s.
Keywords: infinitely divisible distributions, operator-stable laws, stable distributions.
Funding agency Grant number
Russian Science Foundation 22-21-00016
This research was carried out with the financial support of the Russian Science Foundation (grant 22-21-00016).
Received: 11.01.2022
Revised: 02.02.2022
Accepted: 07.02.2022
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 3, Pages 335–351
DOI: https://doi.org/10.1137/S0040585X97T990976
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Alekseev, “Stable random variables with complex stability index, I”, Teor. Veroyatnost. i Primenen., 67:3 (2022), 421–442; Theory Probab. Appl., 67:3 (2022), 335–351
Citation in format AMSBIB
\Bibitem{Ale22}
\by I.~A.~Alekseev
\paper Stable random variables with complex stability index,~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 3
\pages 421--442
\mathnet{http://mi.mathnet.ru/tvp5553}
\crossref{https://doi.org/10.4213/tvp5553}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 3
\pages 335--351
\crossref{https://doi.org/10.1137/S0040585X97T990976}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85152002075}
Linking options:
  • https://www.mathnet.ru/eng/tvp5553
  • https://doi.org/10.4213/tvp5553
  • https://www.mathnet.ru/eng/tvp/v67/i3/p421
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :36
    References:78
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024