|
This article is cited in 3 scientific papers (total in 3 papers)
On the convergence rate in precise asymptotics
L. V. Rozovskii Saint-Petersburg State Chemical-Pharmaceutical University
Abstract:
We study some aspects of estimation of the convergence rate
in the so-called “exact asymptotics.” In particular, we obtain
asymptotic expansions in powers of $\varepsilon$ of sums of the form
$\sum_{n\ge 1} n^s\,\mathbf P(\xi_{\alpha}> \varepsilon
n^{\delta})$, where a random variable $\xi_{\alpha}$ has
a stable distribution with an exponent $\alpha\in (0, 2]$,
$\delta>0$, $s\in \mathbf R$.
Keywords:
convergence rates, precise asymptotics, complete convergence.
Received: 29.10.2021 Revised: 17.02.2022 Accepted: 21.02.2022
Citation:
L. V. Rozovskii, “On the convergence rate in precise asymptotics”, Teor. Veroyatnost. i Primenen., 68:1 (2023), 57–74; Theory Probab. Appl., 68:1 (2023), 46–61
Linking options:
https://www.mathnet.ru/eng/tvp5536https://doi.org/10.4213/tvp5536 https://www.mathnet.ru/eng/tvp/v68/i1/p57
|
|