Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 4, Pages 914–928
DOI: https://doi.org/10.4213/tvp5511
(Mi tvp5511)
 

This article is cited in 2 scientific papers (total in 2 papers)

Distributional uncertainty of the financial time series measured by $G$-expectation

Shige Penga, Shuzhen Yangb

a Institute of Mathematics, Shandong University, Jinan, China
b Zhong Tai Securities Institute for Financial Studies, Shandong University, Jinan, China
Full-text PDF (513 kB) Citations (2)
References:
Abstract: Based on the law of large numbers and the central limit theorem under nonlinear expectation, we introduce a new method of using $G$-normal distribution to measure financial risks. Applying max-mean estimators and a small windows method, we establish autoregressive models to determine the parameters of $G$-normal distribution, i.e., the return, maximal, and minimal volatilities of the time series. Utilizing the value at risk (VaR) predictor model under $G$-normal distribution, we show that the $G$-VaR model gives an excellent performance in predicting the VaR for a benchmark dataset comparing to many well-known VaR predictors.
Keywords: autoregressive model, sublinear expectation, volatility uncertainty, $G$-VaR, $G$-normal distribution.
Funding agency Grant number
National Key Research and Development Program of China 2018YFA0703900
National Natural Science Foundation of China 11701330
Young Scholars Program of Shandong University
This work was supported by the National Key R&D Program of China (2018YFA0703900), National Natural Science Foundation of China (project 11701330), and Young Scholars Program of Shandong University.
Received: 23.06.2021
Accepted: 06.07.2021
English version:
Theory of Probability and its Applications, 2022, Volume 66, Issue 4, Pages 729–741
DOI: https://doi.org/10.1137/S0040585X97T990708
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Shige Peng, Shuzhen Yang, “Distributional uncertainty of the financial time series measured by $G$-expectation”, Teor. Veroyatnost. i Primenen., 66:4 (2021), 914–928; Theory Probab. Appl., 66:4 (2022), 729–741
Citation in format AMSBIB
\Bibitem{PenYan21}
\by Shige~Peng, Shuzhen~Yang
\paper Distributional uncertainty of the financial time series measured by $G$-expectation
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 4
\pages 914--928
\mathnet{http://mi.mathnet.ru/tvp5511}
\crossref{https://doi.org/10.4213/tvp5511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4331225}
\zmath{https://zbmath.org/?q=an:7481235}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 66
\issue 4
\pages 729--741
\crossref{https://doi.org/10.1137/S0040585X97T990708}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129632627}
Linking options:
  • https://www.mathnet.ru/eng/tvp5511
  • https://doi.org/10.4213/tvp5511
  • https://www.mathnet.ru/eng/tvp/v66/i4/p914
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :52
    References:36
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024