Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 4, Pages 839–888
DOI: https://doi.org/10.4213/tvp5505
(Mi tvp5505)
 

This article is cited in 2 scientific papers (total in 2 papers)

A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions

I. Karatzasa, W. Schachermayerb, B. Tschidererb

a Columbia University, New York, USA
b University of Vienna, Vienna, Austria
Full-text PDF (798 kB) Citations (2)
References:
Abstract: We revisit the variational characterization of conservative diffusion as entropic gradient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin–Smoluchowski type, the Fokker–Planck probability density flow maximizes the rate of relative entropy dissipation, as measured by the distance traveled in the ambient space of probability measures with finite second moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process versions of these features, valid along almost every trajectory of the diffusive motion in the backwards direction of time, using a very direct perturbation analysis. By averaging our trajectorial results with respect to the underlying measure on path space, we establish the maximal rate of entropy dissipation along the Fokker–Planck flow and measure exactly the deviation from this maximum that corresponds to any given perturbation. A bonus of our trajectorial approach is that it derives the HWI inequality relating relative entropy (H), Wasserstein distance (W), and relative Fisher information (I).
Keywords: relative entropy, Wasserstein distance, Fisher information, optimal transport, gradient flow, diffusion processes, time reversal, functional inequalities.
Funding agency Grant number
National Science Foundation NSF-DMS-14-05210
NSF-DMS-20-04997
Austrian Science Fund P28661
Vienna Science and Technology Fund (WWTF) MA14-008
MA16-021
MINERVA Foundation
I.~Karatzas acknowledges support from the National Science \text{Foundation} (NSF) under grants NSF-DMS-14-05210 and NSF-DMS-20-04997. W.~Schachermayer and B.~Tschiderer acknowledge support by the Austrian Science Fund (FWF) under grant P28661 and by the Vienna Science and Technology Fund (WWTF) through project MA16-021. W.~Schachermayer additionally appreciates support by the WWTF project MA14-008. Much of this work was done during a~semester-long visit by W.~Schachermayer at the Department of Mathematics, Columbia University, supported by a~Minerva Foundation Fellowship.
Received: 19.05.2021
Accepted: 06.07.2021
English version:
Theory of Probability and its Applications, 2022, Volume 66, Issue 4, Pages 668–707
DOI: https://doi.org/10.1137/S0040585X97T990678
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Karatzas, W. Schachermayer, B. Tschiderer, “A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions”, Teor. Veroyatnost. i Primenen., 66:4 (2021), 839–888; Theory Probab. Appl., 66:4 (2022), 668–707
Citation in format AMSBIB
\Bibitem{KarSchTsc21}
\by I.~Karatzas, W.~Schachermayer, B.~Tschiderer
\paper A trajectorial approach to the gradient flow properties of Langevin--Smoluchowski diffusions
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 4
\pages 839--888
\mathnet{http://mi.mathnet.ru/tvp5505}
\crossref{https://doi.org/10.4213/tvp5505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4331222}
\zmath{https://zbmath.org/?q=an:1480.60237}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 66
\issue 4
\pages 668--707
\crossref{https://doi.org/10.1137/S0040585X97T990678}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129671604}
Linking options:
  • https://www.mathnet.ru/eng/tvp5505
  • https://doi.org/10.4213/tvp5505
  • https://www.mathnet.ru/eng/tvp/v66/i4/p839
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :59
    References:38
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024