Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 4, Pages 768–791
DOI: https://doi.org/10.4213/tvp5462
(Mi tvp5462)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partial linear eigenvalue statistics for non-hermitian random matrices

S. O'Rourkea, N. Williamsb

a Department of Mathematics, University of Colorado, CO, USA
b Department of Mathematical Sciences, Appalachian State University, Boone, NC, USA
Full-text PDF (562 kB) Citations (2)
References:
Abstract: For an $n \times n$ independent-entry random matrix $X_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118–2143] asserts that the fluctuations of the linear eigenvalue statistics $\sum_{i=1}^n f(\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\sum_{i=1}^{n-K} f(\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93–117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.
Keywords: random matrix, independent and identically distributed matrices, spectral statistic, linear eigenvalue statistics, rate of convergence, circular law, Wasserstein distance.
Funding agency Grant number
National Science Foundation ECCS-1610003
DMS-1810500
The first author has been supported in part by NSF grants ECCS-1610003 and DMS-1810500.
Received: 06.12.2020
Revised: 23.03.2021
Accepted: 27.05.2021
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 4, Pages 613–632
DOI: https://doi.org/10.1137/S0040585X97T991179
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. O'Rourke, N. Williams, “Partial linear eigenvalue statistics for non-hermitian random matrices”, Teor. Veroyatnost. i Primenen., 67:4 (2022), 768–791; Theory Probab. Appl., 67:4 (2022), 613–632
Citation in format AMSBIB
\Bibitem{OroWil22}
\by S.~O'Rourke, N.~Williams
\paper Partial linear eigenvalue statistics for non-hermitian random matrices
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 4
\pages 768--791
\mathnet{http://mi.mathnet.ru/tvp5462}
\crossref{https://doi.org/10.4213/tvp5462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4548666}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 4
\pages 613--632
\crossref{https://doi.org/10.1137/S0040585X97T991179}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85153221602}
Linking options:
  • https://www.mathnet.ru/eng/tvp5462
  • https://doi.org/10.4213/tvp5462
  • https://www.mathnet.ru/eng/tvp/v67/i4/p768
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :21
    References:55
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024