Processing math: 100%
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1965, Volume 10, Issue 3, Pages 500–509 (Mi tvp545)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Some properties of estimators of the spectrum of a stationary process

T. L. Malevich

Tashkent
Abstract: Let xn (n=0,±1,±2,) be a real Gaussian stationary process with Exn=0 and with the spectral function F(λ) which is unknown and is supposed to be continuous.
The statistic
FN(λ)=12πNλ0|Nn=1xneiny|2dy
is used as an estimator of F(λ).
In § 1 estimations of the moments Emax0λπ|FN(λ)F(λ)|k are obtained. For example the following theorem holds true.
Theorem 1.3. For the process xn
Emax0λπ|FN(λ)F(λ)|kCkk![ωF(1N)]k2,
where ωF() is the modulus of continuity of F(λ).
In § 2 the probability of large deviations of FN(λ) from F(λ) is studied.
The obtained results are also generalized for a certain class of estimators of F(λ).
Received: 14.04.1964
English version:
Theory of Probability and its Applications, 1965, Volume 10, Issue 3, Pages 457–465
DOI: https://doi.org/10.1137/1110053
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. L. Malevich, “Some properties of estimators of the spectrum of a stationary process”, Teor. Veroyatnost. i Primenen., 10:3 (1965), 500–509; Theory Probab. Appl., 10:3 (1965), 457–465
Citation in format AMSBIB
\Bibitem{Mal65}
\by T.~L.~Malevich
\paper Some properties of estimators of the spectrum of a~stationary process
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 3
\pages 500--509
\mathnet{http://mi.mathnet.ru/tvp545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=207056}
\zmath{https://zbmath.org/?q=an:0161.15702}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 3
\pages 457--465
\crossref{https://doi.org/10.1137/1110053}
Linking options:
  • https://www.mathnet.ru/eng/tvp545
  • https://www.mathnet.ru/eng/tvp/v10/i3/p500
  • This publication is cited in the following 3 articles:
    1. David R. Brillinger, Selected Works of David Brillinger, 2012, 179  crossref
    2. V. G. Alekseev, “On the uniform convergence of estimates of the spectral density of a Gaussian stationary random process”, Theory Probab. Appl., 19:1 (1974), 193–200  mathnet  mathnet  crossref
    3. T. L. Malevich, “Asymptotic normality of the number of crossings of the zero level by a Gaussian process”, Theory Probab. Appl., 14:2 (1969), 287–295  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025