Abstract:
Let xn (n=0,±1,±2,…) be a real Gaussian stationary process with Exn=0 and with the spectral function F(λ) which is unknown and is supposed to be continuous.
The statistic
FN(λ)=12πN∫λ0|N∑n=1xne−iny|2dy
is used as an estimator of F(λ).
In § 1 estimations of the moments Emax0⩽λ⩽π|FN(λ)−F(λ)|k are obtained. For example the following theorem holds true.
Theorem 1.3. For the process xn Emax0⩽λ⩽π|FN(λ)−F(λ)|k⩽Ckk![ωF(1N)]k2,
where ωF(⋅) is the modulus of continuity of F(λ).
In § 2 the probability of large deviations of FN(λ) from F(λ) is studied.
The obtained results are also generalized for a certain class of estimators of F(λ).
Citation:
T. L. Malevich, “Some properties of estimators of the spectrum of a stationary process”, Teor. Veroyatnost. i Primenen., 10:3 (1965), 500–509; Theory Probab. Appl., 10:3 (1965), 457–465
\Bibitem{Mal65}
\by T.~L.~Malevich
\paper Some properties of estimators of the spectrum of a~stationary process
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 3
\pages 500--509
\mathnet{http://mi.mathnet.ru/tvp545}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=207056}
\zmath{https://zbmath.org/?q=an:0161.15702}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 3
\pages 457--465
\crossref{https://doi.org/10.1137/1110053}
Linking options:
https://www.mathnet.ru/eng/tvp545
https://www.mathnet.ru/eng/tvp/v10/i3/p500
This publication is cited in the following 3 articles:
David R. Brillinger, Selected Works of David Brillinger, 2012, 179
V. G. Alekseev, “On the uniform convergence of estimates of the spectral density of a Gaussian stationary random process”, Theory Probab. Appl., 19:1 (1974), 193–200
T. L. Malevich, “Asymptotic normality of the number of crossings of the zero level by a Gaussian process”, Theory Probab. Appl., 14:2 (1969), 287–295