Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 2, Pages 289–308
DOI: https://doi.org/10.4213/tvp5433
(Mi tvp5433)
 

This article is cited in 1 scientific paper (total in 1 paper)

Log-optimal portfolio without NFLVR: existence, complete characterization, and duality

T. Choulli, S. Yansori

Mathematical and Statistical Sciences Department, University of Alberta, Edmonton, Alberta, Canada
Full-text PDF (487 kB) Citations (1)
References:
Abstract: This paper addresses the log-optimal portfolio, which is the portfolio with finite expected log-utility that maximizes the expected logarithm utility from terminal wealth, for an arbitrary general semimartingale model. The most advanced literature on this topic elaborates existence and characterization of this portfolio under the no-free-lunch-with-vanishing-risk (NFLVR for short) assumption, while there are many financial models violating NFLVR and admitting the log-optimal portfolio. In this paper, we provide a complete and explicit characterization of the log-optimal portfolio and its associated optimal deflator, give necessary and sufficient conditions for their existence, and elaborate their duality no matter what the market model. Furthermore, our characterization gives an explicit and direct relationship between log-optimal and numéraire portfolios without changing the probability or the numéraire.
Keywords: log-optimal portfolio, numéraire portfolio, NFLVR condition, log-utility, NUPBR condition, deflator, semimartingale model and characteristics.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2019-04779
This research was financed by the Natural Sciences and Engineering Research Council of Canada (NSERC) through grants NSERC RGPIN-2019-04779 (RES0043431).
Received: 01.09.2020
Revised: 04.08.2021
Accepted: 07.08.2021
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 2, Pages 229–245
DOI: https://doi.org/10.1137/S0040585X97T990897
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. Choulli, S. Yansori, “Log-optimal portfolio without NFLVR: existence, complete characterization, and duality”, Teor. Veroyatnost. i Primenen., 67:2 (2022), 289–308; Theory Probab. Appl., 67:2 (2022), 229–245
Citation in format AMSBIB
\Bibitem{ChoYan22}
\by T.~Choulli, S.~Yansori
\paper Log-optimal portfolio without NFLVR: existence, complete characterization, and duality
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 2
\pages 289--308
\mathnet{http://mi.mathnet.ru/tvp5433}
\crossref{https://doi.org/10.4213/tvp5433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466431}
\zmath{https://zbmath.org/?q=an:7573882}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 2
\pages 229--245
\crossref{https://doi.org/10.1137/S0040585X97T990897}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128650319}
Linking options:
  • https://www.mathnet.ru/eng/tvp5433
  • https://doi.org/10.4213/tvp5433
  • https://www.mathnet.ru/eng/tvp/v67/i2/p289
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :25
    References:23
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024