Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2022, Volume 67, Issue 2, Pages 264–288
DOI: https://doi.org/10.4213/tvp5432
(Mi tvp5432)
 

This article is cited in 2 scientific papers (total in 2 papers)

Explicit expressions of the Hua–Pickrell semigroup

J. Aristaa, N. Demnib

a Centro de Modelamiento Matemático, Universidad de Chile
b Aix-Marseille Université
Full-text PDF (519 kB) Citations (2)
References:
Abstract: In this paper, we study the one-dimensional Hua–Pickrell diffusion. We start by revisiting the stationary case considered by E. Wong for which we supply omitted details and write down a unified expression of its semigroup density through the associated Legendre function in the cut. Next, we focus on the general (not necessarily stationary) case for which we prove an intertwining relation between Hua–Pickrell diffusions corresponding to different sets of parameters. Using the Cauchy beta integral on the one hand and Girsanov's theorem on the other hand, we discuss the connection between the stationary and general cases. Afterwards, we prove our main result providing novel integral representations of the Hua–Pickrell semigroup density, answering a question raised by Alili, Matsumoto, and Shiraishi [Séminaire de Probabilités XXXV, Lecture Notes in Math. 1755, Springer, 2001, pp. 396–415]. To this end, we appeal to the semigroup density of the Maass Laplacian and extend it to purely imaginary values of the magnetic field. In the last section, we use the Karlin–McGregor formula to derive an expression of the semigroup density of the multidimensional Hua–Pickrell particle system introduced by T. Assiotis.
Keywords: Hua–Pickrell diffusion, Routh–Romanovski polynomials, associated Legendre function, exponential functionals, Bougerol's identity.
Funding agency Grant number
European Research Council 669306
J. Arista was supported by European Research Council grant 669306.
Received: 01.09.2020
Revised: 27.01.2021
Accepted: 18.02.2021
English version:
Theory of Probability and its Applications, 2022, Volume 67, Issue 2, Pages 208–228
DOI: https://doi.org/10.1137/S0040585X97T990885
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. Arista, N. Demni, “Explicit expressions of the Hua–Pickrell semigroup”, Teor. Veroyatnost. i Primenen., 67:2 (2022), 264–288; Theory Probab. Appl., 67:2 (2022), 208–228
Citation in format AMSBIB
\Bibitem{AriDem22}
\by J.~Arista, N.~Demni
\paper Explicit expressions of the Hua--Pickrell semigroup
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 2
\pages 264--288
\mathnet{http://mi.mathnet.ru/tvp5432}
\crossref{https://doi.org/10.4213/tvp5432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466430}
\zmath{https://zbmath.org/?q=an:7573881}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 2
\pages 208--228
\crossref{https://doi.org/10.1137/S0040585X97T990885}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85139260457}
Linking options:
  • https://www.mathnet.ru/eng/tvp5432
  • https://doi.org/10.4213/tvp5432
  • https://www.mathnet.ru/eng/tvp/v67/i2/p264
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :26
    References:27
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024