Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1965, Volume 10, Issue 3, Pages 409–436 (Mi tvp538)  

This article is cited in 57 scientific papers (total in 57 papers)

Some limit theorems of the queueing theory. II. (Many channels systems)

A. A. Borovkov

Institute of Mathematics, Siberian Branch of USSR Academy of Sciences
Abstract: Queneing systems with many input and output channels are considered. By the channel with index $j$, $1\le j\le m$, $m\ge1$, groups of calls of the random size $\eta_1^{(j)},\eta_2^{(j)},\dots$ arrive at the instants $a^{(j)}$, $a^{(j)}+\tau^{(j)}$, $a^{(j)}+\tau_1^{(j)}+\tau_2^{(j)},\dots$. The arrived calls fall in the general queue. The service is made by $M-m\ge1$ servers and described in the similar way: the server with index $j$, $m+1\le j\le M$, begins to work at the instant $a^{(j)}$ and can serve $-\eta^{(j)}\ge0$ calls during random time $\tau^{(j)}$. The sequences $\tau_1^{(j)},\tau_2^{(j)},\dots$; $\eta_1^{(j)},\eta_2^{(j)},\dots$; $j=\overline{1,M}$ “managing” the system are mutually independent sequences of independent identically distributed random variables.
Every server can work in one of the two ways: either the service starts at instans $a^{(j)}$, $a^{(j)}+\tau^{(j)}$, $a^{(j)}+\tau_1^{(j)}+\tau_2^{(j)},\dots$ regardless of the presence of the queue or the service begins only when there is at least one call.
In this paper all the limit distribution laws of the length of the queue $\theta(T)$ at instant $T\to\infty$ are found for the described systems working in heavy traffic when
$$ \delta=-\sum_{j=1}^M\frac{\mathbf M\eta^{(j)}}{\mathbf M\tau^{(j)}}\to0. $$

Theorem. Let
$$ \sigma^2(\delta)=\sum_{j=1}^M\biggl[\frac{\mathbf D\eta^{(j)}}{\mathbf M\tau}+\frac{(\mathbf M\eta^{(j)})^2\mathbf D\tau^{(j)}}{(\mathbf M\tau^{(j)})^3}\biggr]\to\sigma^2>0\text{ as }\delta\to0 $$
and let for some $\gamma>0$ the moments $\mathbf M\tau^{(j)}$, $\mathbf M\bigl|\frac{\tau^{(j)}-\mathbf M\tau^{(j)}}{\sqrt{\mathbf D\tau^{(j)}}}\bigr|^{2+\gamma}$, $\frac{\mathbf M|\eta^{(j)}-\mathbf\eta^{(j)}|^{2+\gamma}}{\mathbf D\eta^{(j)}}$ be bounded uniformly in $\delta$. Let further the initial conditions $\theta(0)$, $a^{(1)},\dots,a^{(M)}$ satisfy the following requirements
$$ (\delta T)^{-1}\max_j\biggl(\theta(0),\frac{a^{(j)}}{\mathbf M\tau^{(j)}}\biggr)\underset{\mathbf P}\to0\text{ if }\delta\sqrt T\ge1 $$
and
$$ T^{1/2}\max_j\biggl(\theta(0),\frac{a^{(j)}}{\mathbf M\tau^{(j)}}\biggr)\underset{\mathbf P}\to0\text{ if }\delta\sqrt T<1 $$

A. If $\delta\sqrt T\to U$, $-\infty\le U\le\infty$
\begin{gather*} \lim_{\delta\to0}\mathbf P\biggl(\theta(T)<\frac x{|\delta|}\mid\theta(0),a^{(1)},\dots,a^{(M)}\biggr)= \\ =\mathbf P\biggl(\omega(t)<\frac{x+t\operatorname{sign}\delta}\sigma,\ 0\le t\le U^2\biggr). \end{gather*}

B. If $\delta\sqrt T\to0$
$$ \lim_{\delta\to0}\mathbf P(\theta(T)<x\sqrt T\mid\theta(0),a^{(1)},\dots,a^{(M)})=\sqrt{\frac2\pi}\int_0^{x/\sigma}e^{-t^2/2}\,dt. $$

C. If $\delta\sqrt T\to-\infty$
$$ \lim_{\delta\to0}\mathbf P(\theta(T)<-\delta T+x\sqrt T\mid\theta(0),a^{(1)},\dots,a^{(M)})=\frac1{\sqrt2\pi}\int_{-\infty}^{x/\sigma}e^{-t^2/2}\,dt. $$
Here $\omega(t)$ is the standard Brownian motion process.
The similar assertion holds true for the waiting time.
Received: 24.12.1964
English version:
Theory of Probability and its Applications, 1965, Volume 10, Issue 3, Pages 375–400
DOI: https://doi.org/10.1137/1110046
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, “Some limit theorems of the queueing theory. II. (Many channels systems)”, Teor. Veroyatnost. i Primenen., 10:3 (1965), 409–436; Theory Probab. Appl., 10:3 (1965), 375–400
Citation in format AMSBIB
\Bibitem{Bor65}
\by A.~A.~Borovkov
\paper Some limit theorems of the queueing theory.~II. (Many channels systems)
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 3
\pages 409--436
\mathnet{http://mi.mathnet.ru/tvp538}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=191002}
\zmath{https://zbmath.org/?q=an:0203.18802}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 3
\pages 375--400
\crossref{https://doi.org/10.1137/1110046}
Linking options:
  • https://www.mathnet.ru/eng/tvp538
  • https://www.mathnet.ru/eng/tvp/v10/i3/p409
    Cycle of papers
    This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :156
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024