Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 2, Pages 338–367
DOI: https://doi.org/10.4213/tvp5358
(Mi tvp5358)
 

This article is cited in 17 scientific papers (total in 17 papers)

Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes

E. A. Feinberga, P. O. Kas'yanovb, Y. Liangc

a Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
b Institute for Applied System Analysis, National Technical University of Ukraine ``Igor Sikorsky Kyiv Polytechnic Institute'', Kyiv, Ukraine
c Rotman School of Management, University of Toronto, Toronto, ON, Canada
References:
Abstract: The classical Fatou lemma states that the lower limit of a sequence of integrals of functions is greater than or equal to the integral of the lower limit. It is known that Fatou's lemma for a sequence of weakly converging measures states a weaker inequality because the integral of the lower limit is replaced with the integral of the lower limit in two parameters, where the second parameter is the argument of the functions. In the present paper, we provide sufficient conditions when Fatou's lemma holds in its classical form for a sequence of weakly converging measures. The functions can take both positive and negative values. Similar results for sequences of setwise converging measures are also proved. We also put forward analogies of Lebesgue's and the monotone convergence theorems for sequences of weakly and setwise converging measures. The results obtained are used to prove broad sufficient conditions for the validity of optimality equations for average-cost Markov decision processes.
Keywords: Fatou's lemma, measure, weak convergence, setwise convergence, Markov decision process.
Funding agency Grant number
National Science Foundation CMMI-1636193
Received: 07.10.2018
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 2, Pages 270–291
DOI: https://doi.org/10.1137/S0040585X97T989945
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Feinberg, P. O. Kas'yanov, Y. Liang, “Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes”, Teor. Veroyatnost. i Primenen., 65:2 (2020), 338–367; Theory Probab. Appl., 65:2 (2020), 270–291
Citation in format AMSBIB
\Bibitem{FeiKasLia20}
\by E.~A.~Feinberg, P.~O.~Kas'yanov, Y.~Liang
\paper Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 2
\pages 338--367
\mathnet{http://mi.mathnet.ru/tvp5358}
\crossref{https://doi.org/10.4213/tvp5358}
\elib{https://elibrary.ru/item.asp?id=45298913}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 2
\pages 270--291
\crossref{https://doi.org/10.1137/S0040585X97T989945}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000568141900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090688031}
Linking options:
  • https://www.mathnet.ru/eng/tvp5358
  • https://doi.org/10.4213/tvp5358
  • https://www.mathnet.ru/eng/tvp/v65/i2/p338
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :336
    References:52
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024