Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 2, Pages 409–419
DOI: https://doi.org/10.4213/tvp5354
(Mi tvp5354)
 

A complement to the Grigoriev theorem for the Kabanov model

J. Zhaoa, E. Lepinettebc

a Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, Jiangsu, P.R. China
b Ceremade, UMR CNRS 7534, Paris Dauphine University, PSL National Research, France
c Gosaef, Tunis-El Manar University, Tunisia
References:
Abstract: We provide an equivalent characterization of the absence of arbitrage opportunity for the bid and ask financial market model. This result, which is an analogue of the Dalang–Morton–Willinger theorem formulated for discrete-time financial market models without friction, supplements and improves the Grigoriev theorem for conic models in the two-dimensional case by showing that the set of all terminal liquidation values is closed.
Keywords: proportional transaction costs, absence of arbitrage opportunities, liquidation value, bid and ask prices, consistent price systems.
Funding agency Grant number
Agence Nationale de la Recherche
Received: 07.10.2018
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 2, Pages 322–329
DOI: https://doi.org/10.1137/S0040585X97T989969
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. Zhao, E. Lepinette, “A complement to the Grigoriev theorem for the Kabanov model”, Teor. Veroyatnost. i Primenen., 65:2 (2020), 409–419; Theory Probab. Appl., 65:2 (2020), 322–329
Citation in format AMSBIB
\Bibitem{ZhaLep20}
\by J.~Zhao, E.~Lepinette
\paper A~complement to the Grigoriev theorem for the Kabanov model
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 2
\pages 409--419
\mathnet{http://mi.mathnet.ru/tvp5354}
\crossref{https://doi.org/10.4213/tvp5354}
\elib{https://elibrary.ru/item.asp?id=45336035}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 2
\pages 322--329
\crossref{https://doi.org/10.1137/S0040585X97T989969}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000568141900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090652797}
Linking options:
  • https://www.mathnet.ru/eng/tvp5354
  • https://doi.org/10.4213/tvp5354
  • https://www.mathnet.ru/eng/tvp/v65/i2/p409
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024