Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 3, Pages 565–580
DOI: https://doi.org/10.4213/tvp5349
(Mi tvp5349)
 

Some asymptotic properties between smooth empirical and quantile processes for dependent random variables

S. Sun, W. Zhu

Department of Mathematics, The University of Texas at Arlington, Texas, USA
References:
Abstract: Let $\widehat F_n$ be the smooth empirical estimator obtained by integrating a kernel type density estimator based on a random sample of size $n$ from continuous distribution function $F$. The almost sure deviation between smooth empirical and smooth quantile processes is investigated under $\phi$-mixing and strong mixing conditions. We derive a pointwise as well as a uniform Bahadur–Kieffer type representation for smooth quantiles under cases of $\phi$-mixing and strong mixing. These results extend those of Babu and Singh [J. Multivariate Anal., 8 (1978), pp. 532–549] and Ralescu [J. Statist. Plann. Inference, 32 (1992), pp. 243–258].
Keywords: kernel density estimator, almost sure deviation, smooth empirical process, smooth quantile process.
Received: 24.09.2019
Revised: 04.02.2021
Accepted: 17.03.2021
English version:
Theory of Probability and its Applications, 2021, Volume 66, Issue 3, Pages 455–468
DOI: https://doi.org/10.1137/S0040585X97T990514
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Sun, W. Zhu, “Some asymptotic properties between smooth empirical and quantile processes for dependent random variables”, Teor. Veroyatnost. i Primenen., 66:3 (2021), 565–580; Theory Probab. Appl., 66:3 (2021), 455–468
Citation in format AMSBIB
\Bibitem{SunZhu21}
\by S.~Sun, W.~Zhu
\paper Some asymptotic properties between smooth empirical and quantile processes for dependent random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 3
\pages 565--580
\mathnet{http://mi.mathnet.ru/tvp5349}
\crossref{https://doi.org/10.4213/tvp5349}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4294340}
\zmath{https://zbmath.org/?q=an:1476.62071}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 66
\issue 3
\pages 455--468
\crossref{https://doi.org/10.1137/S0040585X97T990514}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129578025}
Linking options:
  • https://www.mathnet.ru/eng/tvp5349
  • https://doi.org/10.4213/tvp5349
  • https://www.mathnet.ru/eng/tvp/v66/i3/p565
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :53
    References:60
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024