Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 4, Pages 693–709
DOI: https://doi.org/10.4213/tvp5339
(Mi tvp5339)
 

This article is cited in 2 scientific papers (total in 3 papers)

The joint law of a max-continuous local submartingale and its maximum

A. A. Gushchin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (426 kB) Citations (3)
References:
Abstract: We consider the family of converging max-continuous local submartingales starting from zero. An equivalence relation for processes of this family is introduced so that two processes are called equivalent if their joint laws of the terminal value and the maximum are the same. We single out a subfamily of processes of simple structure that have a unique (in the sense of the distribution) representative in each equivalence class. Next, using an extension of Monroe's theorem, we embed a process of this subfamily in a Brownian motion using a minimal time-change, and from this embedding construct a continuous local martingale from the same equivalence class. Moreover, it is found that whether a process from this family belongs to the class of uniformly integrable martingales depends only on its equivalence class. So, these results provide an alternative approach to the problems of characterization of the distribution of a continuous local martingale and its maximum, which were considered by L. C. G. Rogers and P. Vallois in the early 1990s.
Keywords: Skorokhod embedding problem, time-change, local max-level martingale, local submartingale, max-continuous random process, single jump processes, running maximum of a process.
Funding agency Grant number
Russian Science Foundation 19-11-00290
Received: 11.07.2019
Revised: 21.07.2020
Accepted: 06.07.2020
English version:
Theory of Probability and its Applications, 2021, Volume 65, Issue 4, Pages 545–557
DOI: https://doi.org/10.1137/S0040585X97T990113
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Gushchin, “The joint law of a max-continuous local submartingale and its maximum”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 693–709; Theory Probab. Appl., 65:4 (2021), 545–557
Citation in format AMSBIB
\Bibitem{Gus20}
\by A.~A.~Gushchin
\paper The joint law of a~max-continuous local submartingale and its maximum
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 4
\pages 693--709
\mathnet{http://mi.mathnet.ru/tvp5339}
\crossref{https://doi.org/10.4213/tvp5339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4167880}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 65
\issue 4
\pages 545--557
\crossref{https://doi.org/10.1137/S0040585X97T990113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000616235300003}
Linking options:
  • https://www.mathnet.ru/eng/tvp5339
  • https://doi.org/10.4213/tvp5339
  • https://www.mathnet.ru/eng/tvp/v65/i4/p693
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :80
    References:40
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024