Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 1, Pages 133–146
DOI: https://doi.org/10.4213/tvp5317
(Mi tvp5317)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic relative efficiency of the Kendall and Spearman correlation statistics

I. Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
Full-text PDF (464 kB) Citations (1)
References:
Abstract: A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.
Keywords: asymptotic relative efficiency, correlation statistics, Kendall's statistic, Spearman's statistic, nonparametric tests, tests of independence, association function, models of dependence.
Received: 29.04.2019
Revised: 04.08.2022
Accepted: 29.09.2022
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 1, Pages 111–122
DOI: https://doi.org/10.1137/S0040585X97T991313
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Pinelis, “Asymptotic relative efficiency of the Kendall and Spearman correlation statistics”, Teor. Veroyatnost. i Primenen., 68:1 (2023), 133–146; Theory Probab. Appl., 68:1 (2023), 111–122
Citation in format AMSBIB
\Bibitem{Pin23}
\by I.~Pinelis
\paper Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 1
\pages 133--146
\mathnet{http://mi.mathnet.ru/tvp5317}
\crossref{https://doi.org/10.4213/tvp5317}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 1
\pages 111--122
\crossref{https://doi.org/10.1137/S0040585X97T991313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85166616418}
Linking options:
  • https://www.mathnet.ru/eng/tvp5317
  • https://doi.org/10.4213/tvp5317
  • https://www.mathnet.ru/eng/tvp/v68/i1/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :22
    References:29
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024