|
A maximal theorem of Hardy–Littlewood type for pairwise i.i.d. random variables and the law of large numbers
T. Nguyen, H. Pham School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
Abstract:
Let $p\in [1,2)$. We show that if $(X_n)_{n=1}^\infty$ is a sequence of
pairwise i.i.d. random variables with $\mathbf{E}|X_1|^p<\infty$, then
$\mathbf{P}\{\sup_n|{S_n}/{n^{1/p}}|> \alpha\}\le
{C_p\,\mathbf{E}|X_1|^p}/{\alpha^p}$ for every $\alpha>0$ for some constant
$C_p$ depending only on $p$, where $S_n:=\sum_{i=1}^n(X_i-\mathbf{E}X_i)$.
This will be proved as a consequence of a more general result where, instead
of being pairwise i.i.d., the sequence $(X_n)$ is only required to be weakly
correlated in the sense of E. Rio. In fact, we prove an inequality that
gives the rates of the convergence $\lim_{n\to\infty}|S_n|/{n^{{1}/{p}}}=0$
a.s. and thus strengthen the main result of [E. Rio, C. R. Acad.Sci. Paris Sér. I Math., 320 (1995), pp. 469–474].
Keywords:
pairwise i.i.d., the law of large numbers, Hardy–Littlewood maximal theorem.
Received: 09.04.2019 Revised: 28.01.2021
Citation:
T. Nguyen, H. Pham, “A maximal theorem of Hardy–Littlewood type for pairwise i.i.d. random variables and the law of large numbers”, Teor. Veroyatnost. i Primenen., 66:3 (2021), 552–564; Theory Probab. Appl., 66:3 (2021), 445–454
Linking options:
https://www.mathnet.ru/eng/tvp5313https://doi.org/10.4213/tvp5313 https://www.mathnet.ru/eng/tvp/v66/i3/p552
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 43 | References: | 48 | First page: | 18 |
|