Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 3, Pages 552–564
DOI: https://doi.org/10.4213/tvp5313
(Mi tvp5313)
 

A maximal theorem of Hardy–Littlewood type for pairwise i.i.d. random variables and the law of large numbers

T. Nguyen, H. Pham

School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
References:
Abstract: Let $p\in [1,2)$. We show that if $(X_n)_{n=1}^\infty$ is a sequence of pairwise i.i.d. random variables with $\mathbf{E}|X_1|^p<\infty$, then $\mathbf{P}\{\sup_n|{S_n}/{n^{1/p}}|> \alpha\}\le {C_p\,\mathbf{E}|X_1|^p}/{\alpha^p}$ for every $\alpha>0$ for some constant $C_p$ depending only on $p$, where $S_n:=\sum_{i=1}^n(X_i-\mathbf{E}X_i)$. This will be proved as a consequence of a more general result where, instead of being pairwise i.i.d., the sequence $(X_n)$ is only required to be weakly correlated in the sense of E. Rio. In fact, we prove an inequality that gives the rates of the convergence $\lim_{n\to\infty}|S_n|/{n^{{1}/{p}}}=0$ a.s. and thus strengthen the main result of [E. Rio, C. R. Acad.Sci. Paris Sér. I Math., 320 (1995), pp. 469–474].
Keywords: pairwise i.i.d., the law of large numbers, Hardy–Littlewood maximal theorem.
Received: 09.04.2019
Revised: 28.01.2021
English version:
Theory of Probability and its Applications, 2021, Volume 66, Issue 3, Pages 445–454
DOI: https://doi.org/10.1137/S0040585X97T990502
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. Nguyen, H. Pham, “A maximal theorem of Hardy–Littlewood type for pairwise i.i.d. random variables and the law of large numbers”, Teor. Veroyatnost. i Primenen., 66:3 (2021), 552–564; Theory Probab. Appl., 66:3 (2021), 445–454
Citation in format AMSBIB
\Bibitem{NguPha21}
\by T.~Nguyen, H.~Pham
\paper A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 3
\pages 552--564
\mathnet{http://mi.mathnet.ru/tvp5313}
\crossref{https://doi.org/10.4213/tvp5313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4294339}
\zmath{https://zbmath.org/?q=an:1479.60064}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 66
\issue 3
\pages 445--454
\crossref{https://doi.org/10.1137/S0040585X97T990502}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129604760}
Linking options:
  • https://www.mathnet.ru/eng/tvp5313
  • https://doi.org/10.4213/tvp5313
  • https://www.mathnet.ru/eng/tvp/v66/i3/p552
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :43
    References:48
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024