Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 3, Pages 521–537
DOI: https://doi.org/10.4213/tvp5299
(Mi tvp5299)
 

This article is cited in 1 scientific paper (total in 1 paper)

Limit theorems for record indicators in threshold $F^\alpha$-schemes

P. He, K. A. Borovkov

School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
Full-text PDF (440 kB) Citations (1)
References:
Abstract: In Nevzorov's $F^\alpha$-scheme, one deals with a sequence of independent random variables with distribution functions that are powers of a common continuous distribution function. A key property of the $F^\alpha$-scheme is that the record indicators for such a sequence are independent. This allows one to obtain several important limit theorems for the total number of records in the sequence up to time $n\to\infty$. We extend these theorems to a much more general class of sequences of random variables obeying a "threshold $F^\alpha$-scheme" where the distribution functions of the variables are close to the powers of a common $F$ only in their right tails, above certain nonrandom nondecreasing threshold levels. Of independent interest is the characterization of the growth rate for extremal processes that we derive in order to verify the conditions of our main theorem. We also establish the asymptotic pairwise independence of record indicators in a special case of threshold $F^\alpha$-schemes.
Keywords: records, maxima of random variables, extremal process, growth rate, $F^\alpha$-scheme, almost sure behavior.
Received: 11.03.2019
Revised: 30.06.2019
Accepted: 11.07.2019
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 3, Pages 405–417
DOI: https://doi.org/10.1137/S0040585X97T990034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. He, K. A. Borovkov, “Limit theorems for record indicators in threshold $F^\alpha$-schemes”, Teor. Veroyatnost. i Primenen., 65:3 (2020), 521–537; Theory Probab. Appl., 65:3 (2020), 405–417
Citation in format AMSBIB
\Bibitem{HeBor20}
\by P.~He, K.~A.~Borovkov
\paper Limit theorems for record indicators in threshold $F^\alpha$-schemes
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 3
\pages 521--537
\mathnet{http://mi.mathnet.ru/tvp5299}
\crossref{https://doi.org/10.4213/tvp5299}
\elib{https://elibrary.ru/item.asp?id=Server is temporarily unavailable, try to press F5 button}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 3
\pages 405--417
\crossref{https://doi.org/10.1137/S0040585X97T990034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587381700005}
\elib{https://elibrary.ru/item.asp?id=45151743}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096061120}
Linking options:
  • https://www.mathnet.ru/eng/tvp5299
  • https://doi.org/10.4213/tvp5299
  • https://www.mathnet.ru/eng/tvp/v65/i3/p521
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :44
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024