Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2021, Volume 66, Issue 1, Pages 175–195
DOI: https://doi.org/10.4213/tvp5298
(Mi tvp5298)
 

The first passage time density of Brownian motion and the heat equation with Dirichlet boundary condition in time dependent domains

J. M. Lee

Seoul, Republic of Korea
References:
Abstract: In [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] it is proved that we can have a continuous first-passage-time density function of one-dimensional standard Brownian motion when the boundary is Hölder continuous with exponent greater than $1/2$. For the purpose of extending the results of [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849] to multidimensional domains, we show that there exists a continuous first-passage-time density function of standard $d$-dimensional Brownian motion in moving boundaries in $\mathbb{R}^{d}$, $d\geq 2$, under a $C^{3}$-diffeomorphism. Similarly as in [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837–849], by using a property of local time of standard $d$-dimensional Brownian motion and the heat equation with Dirichlet boundary condition, we find a sufficient condition for the existence of the continuous density function.
Keywords: first passage time, Brownian motion, heat equation, Dirichlet boundary condition.
Received: 10.03.2019
Revised: 28.07.2020
Accepted: 12.12.2019
English version:
Theory of Probability and its Applications, 2021, Volume 66, Issue 1, Pages 142–159
DOI: https://doi.org/10.1137/S0040585X97T990307
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. M. Lee, “The first passage time density of Brownian motion and the heat equation with Dirichlet boundary condition in time dependent domains”, Teor. Veroyatnost. i Primenen., 66:1 (2021), 175–195; Theory Probab. Appl., 66:1 (2021), 142–159
Citation in format AMSBIB
\Bibitem{Lee21}
\by J.~M.~Lee
\paper The first passage time density of Brownian motion and the heat equation
with Dirichlet boundary condition in time dependent domains
\jour Teor. Veroyatnost. i Primenen.
\yr 2021
\vol 66
\issue 1
\pages 175--195
\mathnet{http://mi.mathnet.ru/tvp5298}
\crossref{https://doi.org/10.4213/tvp5298}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 66
\issue 1
\pages 142--159
\crossref{https://doi.org/10.1137/S0040585X97T990307}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129747429}
Linking options:
  • https://www.mathnet.ru/eng/tvp5298
  • https://doi.org/10.4213/tvp5298
  • https://www.mathnet.ru/eng/tvp/v66/i1/p175
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :60
    References:24
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024