Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 1, Pages 126–137
DOI: https://doi.org/10.4213/tvp5294
(Mi tvp5294)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the pearson's chi-square test for normality of autoregression with outliers

M. V. Boldin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (433 kB) Citations (2)
References:
Abstract: We consider a stationary linear $\operatorname{AR}(p)$-model with observations subject to gross errors (outliers). The autoregression parameters and the distribution of innovations are unknown. Based on the residuals from the parameter estimators, we construct an analogue of an empirical distribution function and the corresponding Pearson chi-square type test for the normality of distributions of innovations (we recall that the normality of innovations is equivalent to that of the autoregression sequence itself). We find also the asymptotic power of the test under local alternatives and establish its qualitative robustness under a hypothesis and alternatives.
Keywords: \bad autoregression, outliers, residuals, empirical distribution function, Pearson chi-square test, robustness, local alternatives.
Received: 15.02.2019
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 1, Pages 102–110
DOI: https://doi.org/10.1137/S0040585X97T989842
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Boldin, “On the pearson's chi-square test for normality of autoregression with outliers”, Teor. Veroyatnost. i Primenen., 65:1 (2020), 126–137; Theory Probab. Appl., 65:1 (2020), 102–110
Citation in format AMSBIB
\Bibitem{Bol20}
\by M.~V.~Boldin
\paper On the pearson's chi-square test for normality of autoregression with outliers
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 1
\pages 126--137
\mathnet{http://mi.mathnet.ru/tvp5294}
\crossref{https://doi.org/10.4213/tvp5294}
\elib{https://elibrary.ru/item.asp?id=45299850}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 1
\pages 102--110
\crossref{https://doi.org/10.1137/S0040585X97T989842}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551395200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090622408}
Linking options:
  • https://www.mathnet.ru/eng/tvp5294
  • https://doi.org/10.4213/tvp5294
  • https://www.mathnet.ru/eng/tvp/v65/i1/p126
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024