|
Short Communications
On sets of laws of continuous martingales
Yu. M. Kabanovabc a Université Bourgogne Franche-Comté, Laboratoire de Mathématiques, France
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University
Abstract:
We prove that the set of laws of stochastic integrals $H\,{\cdot}\, W$,
where $W$ is a multidimensional Wiener process and $H^2$ takes values in
a compact convex subset $\mathbf{D}$ of the set of symmetric positive
semidefinite matrices, is
weakly dense in the set of laws of martingales $M$ with $d\langle M \rangle/dt$
taking values in $\mathbf{D}$.
Keywords:
Wiener process, continuous martingales, stochastic integrals, weak convergence of measures.
Received: 07.12.2018 Revised: 31.12.2019
Citation:
Yu. M. Kabanov, “On sets of laws of continuous martingales”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 823–828; Theory Probab. Appl., 65:4 (2021), 652–655
Linking options:
https://www.mathnet.ru/eng/tvp5280https://doi.org/10.4213/tvp5280 https://www.mathnet.ru/eng/tvp/v65/i4/p823
|
Statistics & downloads: |
Abstract page: | 251 | Full-text PDF : | 60 | References: | 29 | First page: | 10 |
|