Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 4, Pages 725–745
DOI: https://doi.org/10.4213/tvp5273
(Mi tvp5273)
 

Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems

C. Lu, X. J. Wang, Y. Wu

School of Mathematical Sciences, Anhui University, Hefei, People's Republic of China
References:
Abstract: Let $X_t=\sum_{j=-\infty}^{\infty}A_j\varepsilon_{t-j}$ be a dependent linear process, where the $\{\varepsilon_n,\, n\in \mathbf{Z}\}$ is a sequence of zero mean $m$-extended negatively dependent ($m$-END, for short) random variables which is stochastically dominated by a random variable $\varepsilon$, and $\{A_n,\, n\in \mathbf{Z}\}$ is also a sequence of zero mean $m$-END random variables. Under some suitable conditions, the complete moment convergence for the dependent linear processes is established. In particular, the sufficient conditions of the complete moment convergence are provided. As an application, we further study the convergence of the state observers of linear-time-invariant systems.
Keywords: complete moment convergence, END random variables, linear processes, linear-time-invariant systems.
Funding agency Grant number
National Natural Science Foundation of China 11671012
11871072
11701004
11701005
Natural Science Foundation of Anhui Province 1808085QA03
1908085QA01
1908085QA07
Provincial Natural Science Research Project of Anhui Colleges KJ2019A0003
Project on Reserve Candidates for Academic and Technical Leaders of Anhui Province 2017H123
Supported by the National Natural Science Foundation of China (11671012, 11871072, 11701004, 11701005), the Natural Science Foundation of Anhui Province (1808085QA03, 1908085QA01, 1908085QA07), the Provincial Natural Science Research Project of Anhui Colleges (KJ2019A0003), and the Project on Reserve Candidates for Academic and Technical Leaders of Anhui Province (2017H123).
Received: 19.11.2018
Revised: 09.10.2019
Accepted: 26.11.2019
English version:
Theory of Probability and its Applications, 2021, Volume 65, Issue 4, Pages 570–587
DOI: https://doi.org/10.1137/S0040585X97T990137
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: C. Lu, X. J. Wang, Y. Wu, “Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 725–745; Theory Probab. Appl., 65:4 (2021), 570–587
Citation in format AMSBIB
\Bibitem{LuWanWu20}
\by C.~Lu, X.~J.~Wang, Y.~Wu
\paper Complete moment convergence for the dependent linear processes with application to the state observers of linear-time-invariant systems
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 4
\pages 725--745
\mathnet{http://mi.mathnet.ru/tvp5273}
\crossref{https://doi.org/10.4213/tvp5273}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 65
\issue 4
\pages 570--587
\crossref{https://doi.org/10.1137/S0040585X97T990137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000616235300005}
Linking options:
  • https://www.mathnet.ru/eng/tvp5273
  • https://doi.org/10.4213/tvp5273
  • https://www.mathnet.ru/eng/tvp/v65/i4/p725
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024