Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 3, Pages 479–497
DOI: https://doi.org/10.4213/tvp5267
(Mi tvp5267)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the complexity and dimension of continuous finite-dimensional maps

B. S. Darkhovskyab

a Institute for Systems Analysis of Russian Academy of Sciences
b Russian University of Transport
Full-text PDF (476 kB) Citations (6)
References:
Abstract: We introduce the concept of $\varepsilon$-complexity of an individual continuous finite-dimensional map. This concept is in good accord with the principle of A. N. Kolmogorov's idea of measuring complexity of objects. It is shown that the $\varepsilon$-complexity of an “almost all” Hölder map can be effectively described. This description can be used as a basis for a model-free technique for segmentation and classification of data of arbitrary nature. A new definition of the dimension of the graph of a map is also proposed.
Keywords: $\varepsilon$-complexity, continuous maps, model-free classification and segmentation of data.
Funding agency Grant number
Russian Foundation for Basic Research 17-29-02115
20-07-00221
Received: 06.11.2018
Revised: 25.12.2019
Accepted: 20.01.2020
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 3, Pages 375–387
DOI: https://doi.org/10.1137/S0040585X97T990010
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. S. Darkhovsky, “On the complexity and dimension of continuous finite-dimensional maps”, Teor. Veroyatnost. i Primenen., 65:3 (2020), 479–497; Theory Probab. Appl., 65:3 (2020), 375–387
Citation in format AMSBIB
\Bibitem{Dar20}
\by B.~S.~Darkhovsky
\paper On the complexity and dimension of continuous finite-dimensional maps
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 3
\pages 479--497
\mathnet{http://mi.mathnet.ru/tvp5267}
\crossref{https://doi.org/10.4213/tvp5267}
\elib{https://elibrary.ru/item.asp?id=45213662}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 3
\pages 375--387
\crossref{https://doi.org/10.1137/S0040585X97T990010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000587381700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85093103005}
Linking options:
  • https://www.mathnet.ru/eng/tvp5267
  • https://doi.org/10.4213/tvp5267
  • https://www.mathnet.ru/eng/tvp/v65/i3/p479
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :66
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024