|
Short Communications
On optimal upper bound on the tail probability for sums of random variables
I. Pinelis Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
Abstract:
Let $s$ be any given real number. An explicit construction is provided of
random variables (r.v.'s) $X$ and $Y$ such that $\sup\mathbf{P}(X+Y\ge s)$ is
attained, where the $\sup$ is taken over all r.v.'s $X$ and $Y$ with given
distributions.
Keywords:
sums of random variables, tails of distributions, probability inequalities, extremal problems.
Received: 12.10.2017 Revised: 23.03.2018 Accepted: 05.04.2018
Citation:
I. Pinelis, “On optimal upper bound on the tail probability for sums of random variables”, Teor. Veroyatnost. i Primenen., 64:3 (2019), 590–598; Theory Probab. Appl., 64:3 (2019), 474–480
Linking options:
https://www.mathnet.ru/eng/tvp5249https://doi.org/10.4213/tvp5249 https://www.mathnet.ru/eng/tvp/v64/i3/p590
|
Statistics & downloads: |
Abstract page: | 253 | Full-text PDF : | 35 | References: | 49 | First page: | 24 |
|