Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 3, Pages 590–598
DOI: https://doi.org/10.4213/tvp5249
(Mi tvp5249)
 

Short Communications

On optimal upper bound on the tail probability for sums of random variables

I. Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
References:
Abstract: Let $s$ be any given real number. An explicit construction is provided of random variables (r.v.'s) $X$ and $Y$ such that $\sup\mathbf{P}(X+Y\ge s)$ is attained, where the $\sup$ is taken over all r.v.'s $X$ and $Y$ with given distributions.
Keywords: sums of random variables, tails of distributions, probability inequalities, extremal problems.
Received: 12.10.2017
Revised: 23.03.2018
Accepted: 05.04.2018
English version:
Theory of Probability and its Applications, 2019, Volume 64, Issue 3, Pages 474–480
DOI: https://doi.org/10.1137/S0040585X97T989635
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Pinelis, “On optimal upper bound on the tail probability for sums of random variables”, Teor. Veroyatnost. i Primenen., 64:3 (2019), 590–598; Theory Probab. Appl., 64:3 (2019), 474–480
Citation in format AMSBIB
\Bibitem{Pin19}
\by I.~Pinelis
\paper On optimal upper bound on the tail probability for sums of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 3
\pages 590--598
\mathnet{http://mi.mathnet.ru/tvp5249}
\crossref{https://doi.org/10.4213/tvp5249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3988277}
\zmath{https://zbmath.org/?q=an:07122191}
\elib{https://elibrary.ru/item.asp?id=38590361}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 3
\pages 474--480
\crossref{https://doi.org/10.1137/S0040585X97T989635}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000492370500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074349494}
Linking options:
  • https://www.mathnet.ru/eng/tvp5249
  • https://doi.org/10.4213/tvp5249
  • https://www.mathnet.ru/eng/tvp/v64/i3/p590
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :35
    References:49
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024