|
Indetermined moment problems related to $q$-functional equations
M. López-García Instituto de Matemáticas-Unidad Cuernavaca, Universidad Nacional Autónoma de México, México
Abstract:
For $q\in (0,1)$, $p_1,p_2,p\in \mathbb{R}_+$, we characterize all the solutions
of the $q$-functional equations
$(1+p_2q^{1/2}x)f(qx)=q^{\beta-1/2}(x+p_1q^{-1/2})f(x)$ and $f(qx)=q^{\beta-
1}(x^2+p^2q^{-1})f(x)$, $x>0$, $\beta\in \mathbb{R}$, and we also show that
these solutions solve corresponding indetermined moment problems.
Keywords:
moment problems, $q$-functional equations, log-normal density.
Received: 11.07.2018 Revised: 01.11.2019 Accepted: 22.01.2020
Citation:
M. López-García, “Indetermined moment problems related to $q$-functional equations”, Teor. Veroyatnost. i Primenen., 65:3 (2020), 617–633; Theory Probab. Appl., 65:3 (2020), 482–496
Linking options:
https://www.mathnet.ru/eng/tvp5239https://doi.org/10.4213/tvp5239 https://www.mathnet.ru/eng/tvp/v65/i3/p617
|
|