Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 2, Pages 228–257
DOI: https://doi.org/10.4213/tvp5234
(Mi tvp5234)
 

This article is cited in 9 scientific papers (total in 10 papers)

Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes

O. E. Kudryavtsev

Rostov Branch of Russian Customs Academy
References:
Abstract: In the present paper, we justify the convergence formulas for approximate Wiener–Hopf factorization to exact formulas for factors from a broad class of Lévy processes. Another result obtained here is the analysis of the convergence of Monte Carlo methods that are based on time randomization and explicit Wiener–Hopf factorization formulas. The paper puts forward two generalized approaches to the construction of a Monte Carlo method in the case of Lévy models that do not admit explicit Wiener–Hopf factorization. Both methods depend on approximate formulas that do for Wiener–Hopf factors. In the first approach, the simulation of the supremum and infimum processes at exponentially distributed time moments is effected by inverting their approximate cumulative distribution functions. The second approach, which does not require a partition of the path, involves direct simulation of terminal values of the infimum (supremum) process, and can be used for the simulation of the joint distribution of a Lévy process and the corresponding extrema of the process.
Keywords: Lévy processes, Wiener–Hopf factorization, numerical methods, Monte Carlo methods, the Laplace transform.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00910
This work was supported by the Russian Foundation for Basic Research (grant 18-01-00910).
Received: 18.06.2018
Revised: 22.11.2018
Accepted: 25.10.2018
English version:
Theory of Probability and its Applications, 2019, Volume 64, Issue 2, Pages 186–208
DOI: https://doi.org/10.1137/S0040585X97T989441
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. E. Kudryavtsev, “Approximate Wiener–Hopf factorization and the Monte Carlo methods for Lévy processes”, Teor. Veroyatnost. i Primenen., 64:2 (2019), 228–257; Theory Probab. Appl., 64:2 (2019), 186–208
Citation in format AMSBIB
\Bibitem{Kud19}
\by O.~E.~Kudryavtsev
\paper Approximate Wiener--Hopf factorization and the Monte Carlo methods for L\'evy processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 2
\pages 228--257
\mathnet{http://mi.mathnet.ru/tvp5234}
\crossref{https://doi.org/10.4213/tvp5234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3943119}
\zmath{https://zbmath.org/?q=an:07099808}
\elib{https://elibrary.ru/item.asp?id=37298291}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 64
\issue 2
\pages 186--208
\crossref{https://doi.org/10.1137/S0040585X97T989441}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000478971000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068816471}
Linking options:
  • https://www.mathnet.ru/eng/tvp5234
  • https://doi.org/10.4213/tvp5234
  • https://www.mathnet.ru/eng/tvp/v64/i2/p228
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :100
    References:43
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024