Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 1, Pages 3–22
DOI: https://doi.org/10.4213/tvp5233
(Mi tvp5233)
 

This article is cited in 5 scientific papers (total in 5 papers)

Moment inequalities for linear and nonlinear statistics

F. Götzea, A. A. Naumovb, A. N. Tikhomirovcd

a Bielefeld University, Bielefeld, Germany
b National Research University Higher School of Economics, Moscow
c Komi Scientific Center of Ural Branch of RAS
d Syktyvkar State University
Full-text PDF (528 kB) Citations (5)
References:
Abstract: We consider statistics of the form $T =\sum_{j=1}^n \xi_{j} f_{j}+ \mathcal R $, where $\xi_j, f_j$, $j=1, \dots, n$, and $\mathcal R$ are $\mathfrak M$-measurable random variables for some $\sigma$-algebra $ \mathfrak M$. Assume that there exist $\sigma$-algebras $\mathfrak M^{(1)}, \dots, \mathfrak M^{(n)}$, $ \mathfrak M^{(j)} \subset \mathfrak M$, $j=1, \dots, n$, such that ${E}{(\xi_j\mid \mathfrak M^{(j)})}=0$. Under these assumptions, we prove an inequality for ${E}|T|^p$ with $p \ge 2$. We also discuss applications of the main result of the paper to estimation of moments of linear forms, $U$-statistics, and perturbations of the characteristic equation for the Stieltjes transform of Wigner's semicircle law.
Keywords: statistics of independent random variables, Rosenthal's inequality, $U$-statistics, Wigner's semicircle law, Stieltjes transform, moment inequalities.
Funding agency Grant number
Russian Science Foundation 18-11-00132
Received: 18.06.2018
Accepted: 24.10.2019
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 1, Pages 1–16
DOI: https://doi.org/10.1137/S0040585X97T989787
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Götze, A. A. Naumov, A. N. Tikhomirov, “Moment inequalities for linear and nonlinear statistics”, Teor. Veroyatnost. i Primenen., 65:1 (2020), 3–22; Theory Probab. Appl., 65:1 (2020), 1–16
Citation in format AMSBIB
\Bibitem{GotNauTik20}
\by F.~G\"otze, A.~A.~Naumov, A.~N.~Tikhomirov
\paper Moment inequalities for linear and nonlinear statistics
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/tvp5233}
\crossref{https://doi.org/10.4213/tvp5233}
\elib{https://elibrary.ru/item.asp?id=43303563}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 1
\pages 1--16
\crossref{https://doi.org/10.1137/S0040585X97T989787}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551395200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087003289}
Linking options:
  • https://www.mathnet.ru/eng/tvp5233
  • https://doi.org/10.4213/tvp5233
  • https://www.mathnet.ru/eng/tvp/v65/i1/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :74
    References:40
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024