Abstract:
Using the theory of semimartingal an extention of the well known results oils Robbins–Monro's stochastic approximation method is given. The obtained results. are applied to the least-squares method.
Citation:
E. G. Gladyshev, “On the stochastic approximation”, Teor. Veroyatnost. i Primenen., 10:2 (1965), 297–300; Theory Probab. Appl., 10:2 (1965), 275–278
\Bibitem{Gla65}
\by E.~G.~Gladyshev
\paper On the stochastic approximation
\jour Teor. Veroyatnost. i Primenen.
\yr 1965
\vol 10
\issue 2
\pages 297--300
\mathnet{http://mi.mathnet.ru/tvp523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=185722}
\zmath{https://zbmath.org/?q=an:0147.18002}
\transl
\jour Theory Probab. Appl.
\yr 1965
\vol 10
\issue 2
\pages 275--278
\crossref{https://doi.org/10.1137/1110031}
Linking options:
https://www.mathnet.ru/eng/tvp523
https://www.mathnet.ru/eng/tvp/v10/i2/p297
This publication is cited in the following 84 articles:
M. Vidyasagar, Indian Statistical Institute Series, Probability and Stochastic Processes, 2024, 177
Rajeeva Laxman Karandikar, Mathukumalli Vidyasagar, “Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications”, J Optim Theory Appl, 2024
Thomas J. Sargent, “Sources of artificial intelligence”, Journal of Economic Dynamics and Control, 2024, 104989
Aditya Mahajan, Silviu-Iulian Niculescu, Mathukumalli Vidyasagar, 2024 IEEE 63rd Conference on Decision and Control (CDC), 2024, 3877
M. Vidyasagar, “Convergence of stochastic approximation via martingale and converse Lyapunov methods”, Math. Control Signals Syst., 35:2 (2023), 351
A. S. Mandel, A. I. Mikhalsky, “On the Work of the Institute of Control Sciences of the Russian Academy of Sciences in the Field of Pattern Recognition Theory and Applications in the 20th Century”, Pattern Recognit. Image Anal., 33:4 (2023), 1593
Mathukumalli Vidyasagar, “A tutorial introduction to reinforcement learning”, SICE Journal of Control, Measurement, and System Integration, 16:1 (2023), 172
Barbara Franci, Sergio Grammatico, “Convergence of sequences: A survey”, Annual Reviews in Control, 53 (2022), 161
M. Vidyasagar, 2022 IEEE 61st Conference on Decision and Control (CDC), 2022, 2319
Kshama Dwarakanath, Svitlana S Vyetrenko, Tucker Balch, Proceedings of the Second ACM International Conference on AI in Finance, 2021, 1
Jin Xu, Rongji Mu, Cui Xiong, “A Bayesian stochastic approximation method”, Journal of Statistical Planning and Inference, 211 (2021), 391
Wenxiao Zhao, “An Introduction to Development of Centralized and Distributed Stochastic Approximation Algorithm with Expanding Truncations”, Algorithms, 14:6 (2021), 174
Frank E. Curtis, Katya Scheinberg, Rui Shi, “A Stochastic Trust Region Algorithm Based on Careful Step Normalization”, INFORMS Journal on Optimization, 1:3 (2019), 200
Oleg Rudenko, Oleksandr Bezsonov, Oleh Lebediev, Nataliia Serdiuk, “Robust identification of non-stationary objects with nongaussian interference”, EEJET, 5:4 (101) (2019), 44
T. P. Krasulina, “On one-sided convergence of a modified stochastic approximation process”, Autom. Remote Control, 79:2 (2018), 286–288
Léon Bottou, Frank E. Curtis, Jorge Nocedal, “Optimization Methods for Large-Scale Machine Learning”, SIAM Rev., 60:2 (2018), 223
Recursive Identification and Parameter Estimation, 2014, 307
Michael Kohler, Adam Krzyżak, Harro Walk, “Nonparametric recursive quantile estimation”, Statistics & Probability Letters, 93 (2014), 102
John Sum, Chi-Sing Leung, Kevin Ho, “Convergence Analyses on On-Line Weight Noise Injection-Based Training Algorithms for MLPs”, IEEE Trans. Neural Netw. Learning Syst., 23:11 (2012), 1827
J. P. Sum, Chi-Sing Leung, K. I-J Ho, “On-Line Node Fault Injection Training Algorithm for MLP Networks: Objective Function and Convergence Analysis”, IEEE Trans. Neural Netw. Learning Syst., 23:2 (2012), 211