Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 1, Pages 142–150
DOI: https://doi.org/10.4213/tvp5219
(Mi tvp5219)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Half-spaces with influential variable

D. Dzindzalietaa, F. Götzeb

a Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University
b Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
Full-text PDF (422 kB) Citations (1)
References:
Abstract: We consider Boolean functions $f$ defined on Boolean cube $\{-1,1\}^n$ of half-spaces, i.e., functions of the form $f(x)=\operatorname{sign}(\omega\cdot x-\theta)$. Half-space functions are often called linear threshold functions. We assume that the Boolean cube $\{-1,1\}^n$ is equipped with a uniform measure. We also assume that $\|\omega\|_2\leq 1$ and $\|\omega\|_{\infty} = \delta$ for some $\delta>0$. Let $0\leq\varepsilon\leq 1$ be such that $|\mathbf{E} f|\leq 1-\varepsilon$. We prove that there exists a constant $C>0$ such that $\max_i(\operatorname{Inf}_i f)\geq C\delta\varepsilon$, where $\operatorname{Inf}_i f$ denotes the influence of the $i$th coordinate of the function $f$. This establishes the lower bound obtained earlier by Matulef et al. [SIAM J. Comput., 39 (2010), pp. 2004–2047]. We also show that the optimal constant in this inequality exceeds $3\sqrt{2}/64\approx 0.066$. As an auxiliary result we prove a lower bound for small ball inequalities of linear combinations of Rademacher random variables.
Keywords: Boolean functions, small ball inequalities, linear threshold functions, Boolean cube, influence.
Funding agency Grant number
ESF - European Social Fund 09.3.3-LMT-K-712-02-0167
Universität Bielefeld SFB 701
This research was supported by the European Social Fund project № 09.3.3-LMT-K-712-02-0167 under grant agreement with the Research Counsil of Lithuania (LMTLT) and by SFB 701 in Bielefeld.
Received: 04.08.2015
Revised: 15.05.2019
English version:
Theory of Probability and its Applications, 2020, Volume 65, Issue 1, Pages 114–120
DOI: https://doi.org/10.1137/S0040585X97T989866
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. Dzindzalieta, F. Götze, “Half-spaces with influential variable”, Teor. Veroyatnost. i Primenen., 65:1 (2020), 142–150; Theory Probab. Appl., 65:1 (2020), 114–120
Citation in format AMSBIB
\Bibitem{DziGot20}
\by D.~Dzindzalieta, F.~G\"otze
\paper Half-spaces with influential variable
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 1
\pages 142--150
\mathnet{http://mi.mathnet.ru/tvp5219}
\crossref{https://doi.org/10.4213/tvp5219}
\elib{https://elibrary.ru/item.asp?id=43665996}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 65
\issue 1
\pages 114--120
\crossref{https://doi.org/10.1137/S0040585X97T989866}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551395200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087006739}
Linking options:
  • https://www.mathnet.ru/eng/tvp5219
  • https://doi.org/10.4213/tvp5219
  • https://www.mathnet.ru/eng/tvp/v65/i1/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :34
    References:30
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024