|
This article is cited in 2 scientific papers (total in 2 papers)
Pathwise decompositions of Brownian semistationary processes
O. Sauri Department of Mathematical Sciences, Aalborg University, Denmark
Abstract:
We find a pathwise decomposition of a certain class
of Brownian semistationary processes ($\mathcal{BSS}$) in terms of
fractional Brownian motions. To do this, we specialize in the case
when the kernel of the $\mathcal{BSS}$ is given by $\varphi_{\alpha}(x)=L(x)x^{\alpha}$
with $\alpha\in(-1/2,0)\cup(0,1/2)$ and $L$ a continuous function
slowly varying at zero. We use this decomposition to study some path
properties and derive Itô's formula for this subclass of $\mathcal{BSS}$
processes.
Keywords:
Brownian semistationary processes, fractional Brownian motion, stationary processes, Volterra processes, Itô's formula.
Received: 25.06.2017 Revised: 10.10.2018 Accepted: 18.10.2018
Citation:
O. Sauri, “Pathwise decompositions of Brownian semistationary processes”, Teor. Veroyatnost. i Primenen., 64:1 (2019), 98–125; Theory Probab. Appl., 64:1 (2019), 78–102
Linking options:
https://www.mathnet.ru/eng/tvp5204https://doi.org/10.4213/tvp5204 https://www.mathnet.ru/eng/tvp/v64/i1/p98
|
Statistics & downloads: |
Abstract page: | 292 | Full-text PDF : | 53 | References: | 41 | First page: | 11 |
|