|
Teoriya Veroyatnostei i ee Primeneniya, 1965, Volume 10, Issue 2, Pages 255–266
(Mi tvp520)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On the results of the asymptotic analysis in problems with boundaries
A. A. Borovkova, V. S. Korolyukb a Novosibirsk
b Kiev
Abstract:
The paper reviews the results of the asymptotic analysis in the boundary problems for random walks. Let $\xi_1,\xi_2,\dots$ be a sequence of independent identically distributed random variables $S_n=\sum_{k=1}^n\xi_k$ and let $g_n^-(t)<g_n^+(t)$ ($0\le t\le1$) be two functions such that $g_n^\pm(t)/b_n\to g^\pm(t)$ for some $b_n\to\infty$ uniformly on $[0,1]$. Let $\eta_g$ be the first passade time of the random trajectory $\{k/n,S_k\}$, $k=\overline{1,n}$ out of the region $g_n$ contained between the curves $x=g_n^\pm(t)$, $0\le t\le1$:
$$
\eta_g=1+\max\biggl\{k\colon g_n^-\biggl(\frac jn\biggr)<S_j<g_n^+\biggl(\frac jn\biggr),\quad j=0,1,\dots,k\le n\biggr\}
$$
and $\chi_g$ be the value of the first jump over the boundary of $g_n$. The content of the article is the review of the results on limit theorems for the joint distributions of random variables $\eta_g$, $\chi_g$, $S_n$ as $n\to\infty$. The distributions of some other functionals of the trajectory $S_k$, $k=\overline{1,n}$ are also considered.
Citation:
A. A. Borovkov, V. S. Korolyuk, “On the results of the asymptotic analysis in problems with boundaries”, Teor. Veroyatnost. i Primenen., 10:2 (1965), 255–266; Theory Probab. Appl., 10:2 (1965), 236–246
Linking options:
https://www.mathnet.ru/eng/tvp520 https://www.mathnet.ru/eng/tvp/v10/i2/p255
|
Statistics & downloads: |
Abstract page: | 324 | Full-text PDF : | 122 | First page: | 1 |
|