Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 3, Pages 584–608
DOI: https://doi.org/10.4213/tvp5197
(Mi tvp5197)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model

X. J. Wang, S. H. Hu

School of Mathematical Sciences, Anhui University, Hefei 230601, P. R. China
Full-text PDF (612 kB) Citations (7)
References:
Abstract: In this paper, the Berry–Esseen bound for $\rho$-mixing random variables with the rate of normal approximation $O(n^{-1/6}\log n)$ is established under some suitable conditions. By using the Berry–Esseen bound, we further investigate the Berry–Esseen bound of sample quantiles for $\rho$-mixing random variables. The rate of normal approximation is shown to be $O(n^{-1/6}\log n)$ under some suitable conditions. In addition, the asymptotic normality of the linear weighted estimator for the nonparametric regression model based on $\rho$-mixing errors is studied by using the Berry–Esseen bound that we established. Some new results are obtained in the paper under much weaker dependent structures.
Keywords: Berry–Esseen bound, normal approximation, nonparametric regression model, sample quantiles, $\rho$-mixing sequence.
Funding agency Grant number
National Natural Science Foundation of China 11671012
11501004
11501005
Natural Science Foundation of Anhui Province 1508085J06
Key Projects for Academic Talent of Anhui Province gxbjZD2016005
Project on Reserve Candidates for Academic and Technical Leaders of Anhui Province 2017H123
This work was supported by the National Natural Science Foundation of China (11671012, 11871072, 11701004, 11701005), the Natural Science Foundation of Anhui Province (1508085J06), the Key Projects for Academic Talent of Anhui Province (gxbjZD2016005), and the Project on Reserve Candidates for Academic and Technical Leaders of Anhui Province (2017H123).
Received: 12.06.2016
Revised: 14.12.2017
Accepted: 05.04.2018
English version:
Theory of Probability and its Applications, 2019, Volume 63, Issue 3, Pages 479–499
DOI: https://doi.org/10.1137/S0040585X97T989180
Bibliographic databases:
Document Type: Article
Language: English
Citation: X. J. Wang, S. H. Hu, “The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model”, Teor. Veroyatnost. i Primenen., 63:3 (2018), 584–608; Theory Probab. Appl., 63:3 (2019), 479–499
Citation in format AMSBIB
\Bibitem{WanHu18}
\by X.~J.~Wang, S.~H.~Hu
\paper The Berry--Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 3
\pages 584--608
\mathnet{http://mi.mathnet.ru/tvp5197}
\crossref{https://doi.org/10.4213/tvp5197}
\elib{https://elibrary.ru/item.asp?id=35276558}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 63
\issue 3
\pages 479--499
\crossref{https://doi.org/10.1137/S0040585X97T989180}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457753200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064655691}
Linking options:
  • https://www.mathnet.ru/eng/tvp5197
  • https://doi.org/10.4213/tvp5197
  • https://www.mathnet.ru/eng/tvp/v63/i3/p584
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024