Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 2, Pages 306–329
DOI: https://doi.org/10.4213/tvp5176
(Mi tvp5176)
 

This article is cited in 3 scientific papers (total in 3 papers)

Weak Euler scheme for Lévy-driven stochastic differential equations

R. Mikulevičiusa, Ch. Zhangb

a Department of Mathematics, University of Southern California, Los Angeles, USA
b Department of Finance and Banking, Curtin University, Miri, Malaysia
Full-text PDF (566 kB) Citations (3)
References:
Abstract: This paper studies the rate of convergence of the weak Euler approximation for solutions to Lévy-driven stochastic differential equations with nondegenerate main part driven by a spherically symmetric stable process, under the assumption of Hölder continuity. The rate of convergence is derived for a full regularity scale based on solving the associated backward Kolmogorov equation and investigating the dependence of the rate on the regularity of the coefficients and driving processes.
Keywords: stochastic differential equations, Lévy processes, weak Euler approximation, rate of convergence, Hölder conditions.
Received: 06.01.2016
Revised: 13.09.2016
Accepted: 24.10.2017
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 2, Pages 246–266
DOI: https://doi.org/10.1137/S0040585X97T989039
Bibliographic databases:
Document Type: Article
Language: English
Citation: R. Mikulevičius, Ch. Zhang, “Weak Euler scheme for Lévy-driven stochastic differential equations”, Teor. Veroyatnost. i Primenen., 63:2 (2018), 306–329; Theory Probab. Appl., 63:2 (2018), 246–266
Citation in format AMSBIB
\Bibitem{MikZha18}
\by R.~Mikulevi{\v{c}}ius, Ch.~Zhang
\paper Weak Euler scheme for L\'evy-driven stochastic differential equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 2
\pages 306--329
\mathnet{http://mi.mathnet.ru/tvp5176}
\crossref{https://doi.org/10.4213/tvp5176}
\elib{https://elibrary.ru/item.asp?id=32823083}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 2
\pages 246--266
\crossref{https://doi.org/10.1137/S0040585X97T989039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056985672}
Linking options:
  • https://www.mathnet.ru/eng/tvp5176
  • https://doi.org/10.4213/tvp5176
  • https://www.mathnet.ru/eng/tvp/v63/i2/p306
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :43
    References:36
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024