Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 1, Pages 167–185
DOI: https://doi.org/10.4213/tvp5161
(Mi tvp5161)
 

This article is cited in 3 scientific papers (total in 3 papers)

A functional central limit theorem for integrals of stationary mixing random fields

J. Kampf, E. Spodarev

Institute of Stochastics, Ulm University, Germany
Full-text PDF (602 kB) Citations (3)
References:
Abstract: We prove a functional central limit theorem for the integrals $\int_W f(X(t))\, dt$, where $(X(t))_{t\in\mathbf{R}^d}$ is a stationary mixing random field and the stochastic process is indexed by the function $f$, as the integration domain $W$ grows unboundedly in the Van Hove sense. We also discuss properties of the covariance function of the limiting Gaussian process.
Keywords: functional central limit theorem, $\mathrm{GB}$-set, Meixner system, mixing, random field.
Received: 17.03.2016
Revised: 17.05.2017
Accepted: 22.05.2017
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 1, Pages 135–150
DOI: https://doi.org/10.1137/S0040585X97T988952
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Kampf, E. Spodarev, “A functional central limit theorem for integrals of stationary mixing random fields”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 167–185; Theory Probab. Appl., 63:1 (2018), 135–150
Citation in format AMSBIB
\Bibitem{KamSpo18}
\by J.~Kampf, E.~Spodarev
\paper A functional central limit theorem for integrals of stationary mixing random fields
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 1
\pages 167--185
\mathnet{http://mi.mathnet.ru/tvp5161}
\crossref{https://doi.org/10.4213/tvp5161}
\elib{https://elibrary.ru/item.asp?id=32428156}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 1
\pages 135--150
\crossref{https://doi.org/10.1137/S0040585X97T988952}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061756910}
Linking options:
  • https://www.mathnet.ru/eng/tvp5161
  • https://doi.org/10.4213/tvp5161
  • https://www.mathnet.ru/eng/tvp/v63/i1/p167
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024