Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 1, Pages 186–190
DOI: https://doi.org/10.4213/tvp5158
(Mi tvp5158)
 

Short Communications

Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series

A. E. Mazur

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In the model of Gaussian copula time series with the tails of one-dimensional distributions belonging to the Fréchet maximum domain of attraction and the description of dependency based on Gaussian variables (see [A. E. Mazur and V. I. Piterbarg, Moscow Univ. Math. Bull., 70 (2015), pp. 197–201]), an estimator for the copula (which is a nonlinear function that takes Gaussian variables to variables from the Fréchet maximum domain of attraction) is built. This opens the way for statistical analysis of data time series with potentially heavy tails using the machinery of asymptotic analysis of Gaussian sequences. The consistency and asymptotic normality for this estimator are proved.
Keywords: Gaussian sequence, Fréchet maximum domain of attraction, empirical quantile function.
Received: 10.10.2017
Revised: 19.10.2017
Accepted: 23.10.2017
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 1, Pages 151–154
DOI: https://doi.org/10.1137/S0040585X97T988964
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. E. Mazur, “Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 186–190; Theory Probab. Appl., 63:1 (2018), 151–154
Citation in format AMSBIB
\Bibitem{Maz18}
\by A.~E.~Mazur
\paper Modeling and fitting of time series with heavy distribution tails and strong time dependence by Gaussian time series
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 1
\pages 186--190
\mathnet{http://mi.mathnet.ru/tvp5158}
\crossref{https://doi.org/10.4213/tvp5158}
\elib{https://elibrary.ru/item.asp?id=32428157}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 1
\pages 151--154
\crossref{https://doi.org/10.1137/S0040585X97T988964}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064714017}
Linking options:
  • https://www.mathnet.ru/eng/tvp5158
  • https://doi.org/10.4213/tvp5158
  • https://www.mathnet.ru/eng/tvp/v63/i1/p186
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024