|
This article is cited in 18 scientific papers (total in 18 papers)
Constructing explicit estimators in nonlinear regression problems
Yu. Yu. Linkeab, I. S. Borisovab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Abstract:
In the paper, we propose a general approach to constructing explicit consistent
estimators for some classes of nonlinear regression models.
These estimators can be used as initial ones in one-step estimation procedures
capable of delivering, in a sense, optimal estimators in an explicit form.
Keywords:
nonlinear regression, explicit estimator, $\alpha_n$-consistency, asymptotic normality, one-step estimator, initial estimator.
Received: 24.02.2016 Accepted: 22.05.2017
Citation:
Yu. Yu. Linke, I. S. Borisov, “Constructing explicit estimators in nonlinear regression problems”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 29–56; Theory Probab. Appl., 63:1 (2018), 22–44
Linking options:
https://www.mathnet.ru/eng/tvp5155https://doi.org/10.4213/tvp5155 https://www.mathnet.ru/eng/tvp/v63/i1/p29
|
Statistics & downloads: |
Abstract page: | 496 | Full-text PDF : | 99 | References: | 70 | First page: | 36 |
|