Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 4, Pages 753–768
DOI: https://doi.org/10.4213/tvp5145
(Mi tvp5145)
 

Quantifying minimal noncollinearity among random points

I. Pinelis

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA
References:
Abstract: Let $\varphi_ {n, K} $ denote the largest angle in all the triangles with vertices among the $ n $ points selected at random in a compact convex subset $ K $ of $\mathbb {R}^ d $ with nonempty interior, where $ d\ge2 $. It is shown that the distribution of the random variable $\lambda_d (K)\,\frac {n^ 3}{3!}\,(\pi-\varphi_ {n, K})^{d-1} $, where $\lambda_d (K) $ is a certain positive real number which depends only on the dimension $d$ and the shape of $K$, converges to the standard exponential distribution as $n\to\infty$. By using the Steiner symmetrization, it is also shown that $\lambda_d (K)$, which is referred to in the paper as the elongation of $K$, attains its minimum if and only if $K$ is a ball $B^{(d)}$ in $\mathbf {R}^d$. Finally, the asymptotics of $\lambda_d(B^{(d)})$ for large $d$ is determined.
Keywords: convex sets, random points, geometric probability theory, integral geometry, maximal angle, convergence in distribution, Steiner symmetrization, asymptotic approximation.
Received: 28.05.2017
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 4, Pages 604–616
DOI: https://doi.org/10.1137/S0040585X97T988836
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Pinelis, “Quantifying minimal noncollinearity among random points”, Teor. Veroyatnost. i Primenen., 62:4 (2017), 753–768; Theory Probab. Appl., 62:4 (2018), 604–616
Citation in format AMSBIB
\Bibitem{Pin17}
\by I.~Pinelis
\paper Quantifying minimal noncollinearity among random points
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 4
\pages 753--768
\mathnet{http://mi.mathnet.ru/tvp5145}
\crossref{https://doi.org/10.4213/tvp5145}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3722541}
\zmath{https://zbmath.org/?q=an:06918586}
\elib{https://elibrary.ru/item.asp?id=30512381}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 4
\pages 604--616
\crossref{https://doi.org/10.1137/S0040585X97T988836}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441079600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055177543}
Linking options:
  • https://www.mathnet.ru/eng/tvp5145
  • https://doi.org/10.4213/tvp5145
  • https://www.mathnet.ru/eng/tvp/v62/i4/p753
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :56
    References:50
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024