Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 3, Pages 431–446
DOI: https://doi.org/10.4213/tvp5139
(Mi tvp5139)
 

Robust sign test for the unit root hypothesis of autoregression

M. V. Boldin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: An $\operatorname{AR}(1)$-model is considered with autoregression observations that contain gross errors (contaminations) with unknown arbitrary distribution. The unit root hypothesis for autoregression is tested. A special sign test is proposed as an alternative to the least-square test (the latter test is not applicable in this setting). The sign test is shown to be locally qualitatively robust in terms of the equicontinuity of the power.
Keywords: hypotheses testing, autoregression, unit root, sign tests, contaminations, qualitative robustness.
Received: 24.02.2017
Revised: 26.10.2017
Accepted: 20.11.2017
English version:
Theory of Probability and its Applications, 2019, Volume 63, Issue 3, Pages 351–363
DOI: https://doi.org/10.1137/S0040585X97T989106
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Boldin, “Robust sign test for the unit root hypothesis of autoregression”, Teor. Veroyatnost. i Primenen., 63:3 (2018), 431–446; Theory Probab. Appl., 63:3 (2019), 351–363
Citation in format AMSBIB
\Bibitem{Bol18}
\by M.~V.~Boldin
\paper Robust sign test for the unit root hypothesis of autoregression
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 3
\pages 431--446
\mathnet{http://mi.mathnet.ru/tvp5139}
\crossref{https://doi.org/10.4213/tvp5139}
\elib{https://elibrary.ru/item.asp?id=35276550}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 63
\issue 3
\pages 351--363
\crossref{https://doi.org/10.1137/S0040585X97T989106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457753200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064649435}
Linking options:
  • https://www.mathnet.ru/eng/tvp5139
  • https://doi.org/10.4213/tvp5139
  • https://www.mathnet.ru/eng/tvp/v63/i3/p431
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024