Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 1, Pages 117–144
DOI: https://doi.org/10.4213/tvp5136
(Mi tvp5136)
 

This article is cited in 1 scientific paper (total in 1 paper)

Poisson statistics of eigenvalues in the hierarchical Dyson model

A. Bendikova, A. Bravermanb, J. Pikec

a Institute of Mathematics, University of Wroclaw, Wroclaw, Poland
b School of Operation Research and Industrial Engineering, Cornell University, Ithaca, NY, USA
c Department of Mathematics, Cornell University, Ithaca, NY, USA
Full-text PDF (670 kB) Citations (1)
References:
Abstract: Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C$ defined on the set $\mathcal{B}$ of all balls $B\subset X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts in $L^{2}(X,m)$, is essentially self-adjoint, and has a purely point spectrum. Choosing a family $\{\varepsilon(B)\}_{B\in \mathcal{B}}$ of i.i.d. random variables, we define the perturbed function $\mathcal{C}(B)=C(B)(1+\varepsilon(B))$ and the perturbed hierarchical Laplacian $\mathcal{L}=L_{\mathcal{C}}$. All outcomes of the perturbed operator $\mathcal{L}$ are hierarchical Laplacians. In particular they all have purely point spectrum. We study the empirical point process $M$ defined in terms of $\mathcal{L}$-eigenvalues. Under some natural assumptions, $M$ can be approximated by a Poisson point process. Using a result of Arratia, Goldstein, and Gordon based on the Chen–Stein method, we provide total variation convergence rates for the Poisson approximation. We apply our theory to random perturbations of the operator $\mathfrak{D}^{\alpha }$, the $p$-adic fractional derivative of order $\alpha >0$.
Keywords: Poisson approximation, hierarchical Laplacian, ultrametric measure space, field of $p$-adic numbers, fractional derivative, point spectrum, integrated density of states, Stein's method.
Funding agency Grant number
National Science Centre (Narodowe Centrum Nauki) DEC 2015/17/B/ST1/00062
National Science Foundation DMS-0739164
The first author was supported by National Science Centre, Poland (grant DEC 2015/17/B/ST1/00062). The third author was supported in part by NSF grant DMS-0739164.
Received: 18.12.2015
Accepted: 30.06.2016
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 1, Pages 94–116
DOI: https://doi.org/10.1137/S0040585X97T988939
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Bendikov, A. Braverman, J. Pike, “Poisson statistics of eigenvalues in the hierarchical Dyson model”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 117–144; Theory Probab. Appl., 63:1 (2018), 94–116
Citation in format AMSBIB
\Bibitem{BenBraPik18}
\by A.~Bendikov, A.~Braverman, J.~Pike
\paper Poisson statistics of eigenvalues in the hierarchical Dyson model
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 1
\pages 117--144
\mathnet{http://mi.mathnet.ru/tvp5136}
\crossref{https://doi.org/10.4213/tvp5136}
\elib{https://elibrary.ru/item.asp?id=32428154}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 1
\pages 94--116
\crossref{https://doi.org/10.1137/S0040585X97T988939}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064685692}
Linking options:
  • https://www.mathnet.ru/eng/tvp5136
  • https://doi.org/10.4213/tvp5136
  • https://www.mathnet.ru/eng/tvp/v63/i1/p117
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024