Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 3, Pages 556–586
DOI: https://doi.org/10.4213/tvp5129
(Mi tvp5129)
 

This article is cited in 2 scientific papers (total in 2 papers)

The siblings of the coupon collector

A. V. Doumas, V. G. Papanicolaou

Department of Mathematics, National Technical University of Athens, Greece
Full-text PDF (625 kB) Citations (2)
References:
Abstract: The following variant of the collector's problem has attracted considerable attention relatively recently. There is one main collector who collects coupons. Assume there are $N$ different types of coupons with, in general, unequal occurring probabilities. When the main collector gets a "double,” she gives it to her older brother; when this brother gets a "double,” he gives it to the next brother, and so on. Hence, when the main collector completes her collection, the album of the $j$th collector, $j=2, 3, \dots$, will still have $U_j^N$ empty spaces. In this article we develop techniques of computing asymptotics of the average $\mathbf{E}[U_j^N]$ of $U_j^N$ as $N\to \infty$, for a large class of families of coupon probabilities (in many cases the first three terms plus an error). It is notable that in some cases $\mathbf{E}[U_j^N]$ approaches a finite limit as $N\to \infty$, for all $j\ge 2$. Our results concern some popular distributions such as exponential, polynomial, logarithmic, and the (well known for its applications) generalized Zipf law. We also conjecture on the maximum of $\mathbf{E}[U_j^N]$.
Keywords: urn problems, generalized coupon collector's problem (GCCP), hyperharmonic numbers, Lambert series, generalized Zipf law.
Received: 05.07.2014
Revised: 13.09.2016
Accepted: 20.02.2017
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 3, Pages 444–470
DOI: https://doi.org/10.1137/S0040585X97T988733
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. V. Doumas, V. G. Papanicolaou, “The siblings of the coupon collector”, Teor. Veroyatnost. i Primenen., 62:3 (2017), 556–586; Theory Probab. Appl., 62:3 (2018), 444–470
Citation in format AMSBIB
\Bibitem{DouPap17}
\by A.~V.~Doumas, V.~G.~Papanicolaou
\paper The siblings of the coupon collector
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 3
\pages 556--586
\mathnet{http://mi.mathnet.ru/tvp5129}
\crossref{https://doi.org/10.4213/tvp5129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3684649}
\zmath{https://zbmath.org/?q=an:06918576}
\elib{https://elibrary.ru/item.asp?id=29833758}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 3
\pages 444--470
\crossref{https://doi.org/10.1137/S0040585X97T988733}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441079100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052754313}
Linking options:
  • https://www.mathnet.ru/eng/tvp5129
  • https://doi.org/10.4213/tvp5129
  • https://www.mathnet.ru/eng/tvp/v62/i3/p556
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:413
    Full-text PDF :103
    References:68
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024