Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 3, Pages 482–499
DOI: https://doi.org/10.4213/tvp5119
(Mi tvp5119)
 

This article is cited in 4 scientific papers (total in 4 papers)

$K$-differenced vector random fields

R. Alsultan, Ch. Ma

Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS, USA
Full-text PDF (860 kB) Citations (4)
References:
Abstract: A thin-tailed vector random field, referred to as a $K$-differenced vector random field, is introduced. Its finite-dimensional densities are the differences of two Bessel functions of second order, whenever they exist, and its finite-dimensional characteristic functions have simple closed forms as the differences of two power functions or logarithm functions. Its finite-dimensional distributions have thin tails, even thinner than those of a Gaussian one, and it reduces to a Linnik or Laplace vector random field in a limiting case. As one of its most valuable properties, a $K$-differenced vector random field is characterized by its mean and covariance matrix functions just like a Gaussian one. Some covariance matrix structures are constructed in this paper for not only the $K$-differenced vector random field, but also for other second-order elliptically contoured vector random fields. Properties of the multivariate $K$-differenced distribution are also studied.
Keywords: covariance matrix function, cross covariance, direct covariance, elliptically contoured random field, Gaussian random field, $K$-differenced distribution, spherically invariant random field, stationary, variogram.
Received: 10.01.2017
Revised: 26.05.2017
Accepted: 06.03.2018
English version:
Theory of Probability and its Applications, 2019, Volume 63, Issue 3, Pages 393–407
DOI: https://doi.org/10.1137/S0040585X97T989131
Bibliographic databases:
Document Type: Article
Language: English
Citation: R. Alsultan, Ch. Ma, “$K$-differenced vector random fields”, Teor. Veroyatnost. i Primenen., 63:3 (2018), 482–499; Theory Probab. Appl., 63:3 (2019), 393–407
Citation in format AMSBIB
\Bibitem{AlsMa18}
\by R.~Alsultan, Ch.~Ma
\paper $K$-differenced vector random fields
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 3
\pages 482--499
\mathnet{http://mi.mathnet.ru/tvp5119}
\crossref{https://doi.org/10.4213/tvp5119}
\elib{https://elibrary.ru/item.asp?id=35276553}
\transl
\jour Theory Probab. Appl.
\yr 2019
\vol 63
\issue 3
\pages 393--407
\crossref{https://doi.org/10.1137/S0040585X97T989131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457753200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064592450}
Linking options:
  • https://www.mathnet.ru/eng/tvp5119
  • https://doi.org/10.4213/tvp5119
  • https://www.mathnet.ru/eng/tvp/v63/i3/p482
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024