|
This article is cited in 7 scientific papers (total in 7 papers)
High extremes of Gaussian chaos processes: a discrete time approximation approach
A. I. Zhdanov, V. I. Piterbarg Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$
be a Gaussian zero mean stationary a.s. continuous vector process.
Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high
extrema of the Gaussian chaos process
$g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are
products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and
quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$.
Methods of our studies include the Laplace saddle point asymptotic
approximation and the double sum asymptotic method for
probabilities of high excursions of Gaussian processes. For the
first time, using the double sum method, we apply the discrete time
approximation with refining grid.
Keywords:
Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.
Received: 11.01.2017 Revised: 01.08.2017
Citation:
A. I. Zhdanov, V. I. Piterbarg, “High extremes of Gaussian chaos processes: a discrete time approximation approach”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 3–28; Theory Probab. Appl., 63:1 (2018), 1–21
Linking options:
https://www.mathnet.ru/eng/tvp5118https://doi.org/10.4213/tvp5118 https://www.mathnet.ru/eng/tvp/v63/i1/p3
|
Statistics & downloads: |
Abstract page: | 570 | Full-text PDF : | 79 | References: | 58 | First page: | 29 |
|