Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 1, Pages 3–28
DOI: https://doi.org/10.4213/tvp5118
(Mi tvp5118)
 

This article is cited in 7 scientific papers (total in 7 papers)

High extremes of Gaussian chaos processes: a discrete time approximation approach

A. I. Zhdanov, V. I. Piterbarg

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (623 kB) Citations (7)
References:
Abstract: Let $\mathbf{\boldsymbol{\xi}}(t)=(\xi_{1}(t),\ldots,\xi_{d}(t))$ be a Gaussian zero mean stationary a.s. continuous vector process. Let $g\colon{\mathbb{R}}^{d}\to {\mathbb{R}}$ be a homogeneous function of positive degree. We study probabilities of high extrema of the Gaussian chaos process $g(\mathbf{\boldsymbol{\xi}}(t))$. Important examples are products of Gaussian processes, $\prod_{i=1}^{d}\xi_{i}(t)$, and quadratic forms $\sum_{i,j=1}^{d}a_{ij}\xi_{i}(t)\xi_{j}(t)$. Methods of our studies include the Laplace saddle point asymptotic approximation and the double sum asymptotic method for probabilities of high excursions of Gaussian processes. For the first time, using the double sum method, we apply the discrete time approximation with refining grid.
Keywords: Gaussian processes, Gaussian chaos, high extreme probabilities, Laplace saddle point approximation method, double sum method.
Funding agency Grant number
European Union's Seventh Framework Programme RARE-318984
Swiss National Science Foundation
This work was partially supported by grant RARE–318984 (FP7 Marie Curie IRSES Fellowship) and a grant from the SNF.
Received: 11.01.2017
Revised: 01.08.2017
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 1, Pages 1–21
DOI: https://doi.org/10.1137/S0040585X97T988885
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Zhdanov, V. I. Piterbarg, “High extremes of Gaussian chaos processes: a discrete time approximation approach”, Teor. Veroyatnost. i Primenen., 63:1 (2018), 3–28; Theory Probab. Appl., 63:1 (2018), 1–21
Citation in format AMSBIB
\Bibitem{ZhdPit18}
\by A.~I.~Zhdanov, V.~I.~Piterbarg
\paper High extremes of Gaussian chaos processes: a discrete time approximation approach
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 1
\pages 3--28
\mathnet{http://mi.mathnet.ru/tvp5118}
\crossref{https://doi.org/10.4213/tvp5118}
\elib{https://elibrary.ru/item.asp?id=32428149}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 1
\pages 1--21
\crossref{https://doi.org/10.1137/S0040585X97T988885}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060073533}
Linking options:
  • https://www.mathnet.ru/eng/tvp5118
  • https://doi.org/10.4213/tvp5118
  • https://www.mathnet.ru/eng/tvp/v63/i1/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:570
    Full-text PDF :79
    References:58
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024