Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 2, Pages 365–392
DOI: https://doi.org/10.4213/tvp5117
(Mi tvp5117)
 

This article is cited in 4 scientific papers (total in 4 papers)

$N$-Branching random walk with $\alpha$-stable spine

B. Malleinab

a Laboratoire de Probabilités et Modéles Aléatoires, Université Pierre et Marie Curie (Paris 6)
b Département de Mathématiques et Applications, Ècole Normale Supérieure, Paris, France
Full-text PDF (508 kB) Citations (4)
References:
Abstract: We consider a branching-selection particle system on the real line, introduced by Brunet and Derrida in [Phys. Rev. E, 56 (1997), pp. 2597–2604]. In this model the size of the population is fixed to a constant $N$. At each step individuals in the population reproduce independently, making children around their current position. Only the $N$ rightmost children survive to reproduce at the next step. Bérard and Gouéré studied the speed at which the cloud of individuals drifts in [Comm. Math. Phys., 298 (2010), pp. 323–342], assuming the tails of the displacement decays at exponential rate; Bérard and Maillard [Electron. J. Probab., 19 (2014), 22] took interest in the case of heavy tail displacements. We take interest in an intermediate model, considering branching random walks in which the critical “spine” behaves as an $\alpha$-stable random walk.
Keywords: branching random walk, selection, stable distribution.
Funding agency Grant number
Agence Nationale de la Recherche MEMEMO2
Research partially supported by the ANR project MEMEMO2.
Received: 23.03.2015
Revised: 15.09.2015
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 2, Pages 295–318
DOI: https://doi.org/10.1137/S0040585X97T988611
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Mallein, “$N$-Branching random walk with $\alpha$-stable spine”, Teor. Veroyatnost. i Primenen., 62:2 (2017), 365–392; Theory Probab. Appl., 62:2 (2018), 295–318
Citation in format AMSBIB
\Bibitem{Mal17}
\by B.~Mallein
\paper $N$-Branching random~walk with $\alpha$-stable spine
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 2
\pages 365--392
\mathnet{http://mi.mathnet.ru/tvp5117}
\crossref{https://doi.org/10.4213/tvp5117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3649039}
\elib{https://elibrary.ru/item.asp?id=29106603}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 2
\pages 295--318
\crossref{https://doi.org/10.1137/S0040585X97T988611}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432324200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047111383}
Linking options:
  • https://www.mathnet.ru/eng/tvp5117
  • https://doi.org/10.4213/tvp5117
  • https://www.mathnet.ru/eng/tvp/v62/i2/p365
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :51
    References:63
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024