Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 2, Pages 241–266
DOI: https://doi.org/10.4213/tvp5107
(Mi tvp5107)
 

This article is cited in 4 scientific papers (total in 4 papers)

Arak inequalities for concentration functions and the Littlewood–Offord problem

F. Götzea, Yu. S. Eliseevab, A. Yu. Zaitsevbc

a Bielefeld University, Department of Mathematics
b Saint Petersburg State University
c St.-Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (588 kB) Citations (4)
References:
Abstract: Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^{n}X_ka_k $ depending on the arithmetic structure of the coefficients $a_k$. The results obtained the last 10 years for the concentration functions of weighted sums play an important role in the study of singular numbers of random matrices. Recently, Tao and Vu proposed a so-called inverse principle for the Littlewood–Offord problem. We discuss the relations between this inverse principle and a similar principle for sums of arbitrarily distributed independent random variables formulated by Arak in the 1980s.
Keywords: concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00256
16-01-00367
Saint Petersburg State University 6.38.672.2013
Ministry of Education and Science of the Russian Federation 11.G34.31.0026
НШ-2504.2014.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Universität Bielefeld SFB 701
The paper was supported by the SFB 701 in Bielefeld, by Laboratory of Chebyshev in St. Petersburg State University (grant of the Government of Russian Federation 11.G34.31.0026), grant of St. Petersburg State University 6.38.672.2013, the Russian Foundation for Basic Research (grants 13-01-00256, 16-01-00367), the Ministry of Higher Education and Science of the Russian Federation (grant NSh-2504.2014.1), and by the Program of Fundamental Research of Russian Academy of Sciences “Modern Problems of Fundamental Mathematics.”
Received: 11.04.2016
Revised: 30.09.2016
Accepted: 20.10.2016
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 2, Pages 196–215
DOI: https://doi.org/10.1137/S0040585X97T988563
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Götze, Yu. S. Eliseeva, A. Yu. Zaitsev, “Arak inequalities for concentration functions and the Littlewood–Offord problem”, Teor. Veroyatnost. i Primenen., 62:2 (2017), 241–266; Theory Probab. Appl., 62:2 (2018), 196–215
Citation in format AMSBIB
\Bibitem{GotEliZai17}
\by F.~G\"otze, Yu.~S.~Eliseeva, A.~Yu.~Zaitsev
\paper Arak inequalities for concentration functions and the Littlewood--Offord problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 2
\pages 241--266
\mathnet{http://mi.mathnet.ru/tvp5107}
\crossref{https://doi.org/10.4213/tvp5107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3649034}
\elib{https://elibrary.ru/item.asp?id=29106598}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 2
\pages 196--215
\crossref{https://doi.org/10.1137/S0040585X97T988563}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432324200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047131693}
Linking options:
  • https://www.mathnet.ru/eng/tvp5107
  • https://doi.org/10.4213/tvp5107
  • https://www.mathnet.ru/eng/tvp/v62/i2/p241
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024