Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 3, Pages 423–445
DOI: https://doi.org/10.4213/tvp5106
(Mi tvp5106)
 

This article is cited in 2 scientific papers (total in 2 papers)

Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow

S. Zh. Aibatov, L. G. Afanasyeva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (566 kB) Citations (2)
References:
Abstract: The present paper is devoted to queueing systems with regenerative input flow in the presence of heavy tails. Our goal is to develop an asymptotics for the probability of the waiting time process in a stationary regime to exceed a high level. In this paper, we consider the total service time of customers arriving during the time-interval $[0,t]$ as an input flow $X(t)$. This allows us to consider a case when the service times $\{\eta_n\}_{n=1}^\infty$ are dependent random variables that, besides, may be dependent on a number of customers arriving in $[0,t]$. We obtain conditions for the virtual waiting time process in steady state to have a subexponential distribution function. We apply this result to a system with a Markov modulated semi-Markov input flow. We also consider a queue with a doubly stochastic Poisson flow in the case when the random intensity is a regenerative process. We show that these results could be transferred to corresponding systems with an unreliable server.
Keywords: large deviations, regenerative flow, subexponential distributions, waiting timeю.
Received: 18.05.2016
Revised: 20.09.2016
Accepted: 20.10.2016
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 3, Pages 339–355
DOI: https://doi.org/10.1137/S0040585X97T988678
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Zh. Aibatov, L. G. Afanasyeva, “Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow”, Teor. Veroyatnost. i Primenen., 62:3 (2017), 423–445; Theory Probab. Appl., 62:3 (2018), 339–355
Citation in format AMSBIB
\Bibitem{AibAfa17}
\by S.~Zh.~Aibatov, L.~G.~Afanasyeva
\paper Subexponential asymptotics for steady state tail probabilities in a single-server queue with regenerative input flow
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 3
\pages 423--445
\mathnet{http://mi.mathnet.ru/tvp5106}
\crossref{https://doi.org/10.4213/tvp5106}
\zmath{https://zbmath.org/?q=an:06918570}
\elib{https://elibrary.ru/item.asp?id=29833751}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 3
\pages 339--355
\crossref{https://doi.org/10.1137/S0040585X97T988678}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441079100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052733092}
Linking options:
  • https://www.mathnet.ru/eng/tvp5106
  • https://doi.org/10.4213/tvp5106
  • https://www.mathnet.ru/eng/tvp/v62/i3/p423
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:420
    Full-text PDF :65
    References:52
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024