Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 1, Pages 145–162
DOI: https://doi.org/10.4213/tvp5101
(Mi tvp5101)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis

G. Barmalzana, A. T. Payandeh Najafabadib, N. Balakrishnanc

a Department of Statistics, University of Zabol, Sistan and Baluchestan, Iran
b Department of Mathematical Sciences, Shahid Beheshti University, G. C. Evin, Tehran, Iran
c Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
Full-text PDF (442 kB) Citations (1)
References:
Abstract: In this work, we discuss the stochastic comparison of two classical surplus processes in a one-year insurance period. Under the Marshall–Olkin extended exponential random aggregate claim amounts, we extend one result of Khaledi and Ahmadi [J. Statist. Plann. Inference, 138 (2008), pp. 2243–2251]. Applications of our results to the value-at-risk and ruin probability are also given. Our results show that the heterogeneity of the risks in a given insurance portfolio tends to make the portfolio volatile, which in turn leads to requiring more capital.
Keywords: Marshall–Olkin extended exponential distribution, usual multivariate stochastic order, multivariate chain majorization, order statistics, hazard rate function, aggregate claim amounts, value-at-risk, ruin probability.
Received: 17.05.2016
Accepted: 20.10.2016
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 1, Pages 117–131
DOI: https://doi.org/10.1137/S0040585X97T988526
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Barmalzan, A. T. Payandeh Najafabadi, N. Balakrishnan, “Ordering results for aggregate claim amounts from two heterogeneous Marshall–Olkin extended exponential portfolios and their applications in insurance analysis”, Teor. Veroyatnost. i Primenen., 62:1 (2017), 145–162; Theory Probab. Appl., 62:1 (2018), 117–131
Citation in format AMSBIB
\Bibitem{BarPayBal17}
\by G.~Barmalzan, A.~T.~Payandeh Najafabadi, N.~Balakrishnan
\paper Ordering results for aggregate claim amounts from two heterogeneous Marshall--Olkin extended exponential portfolios and their applications in insurance analysis
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 1
\pages 145--162
\mathnet{http://mi.mathnet.ru/tvp5101}
\crossref{https://doi.org/10.4213/tvp5101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3633469}
\zmath{https://zbmath.org/?q=an:06870110}
\elib{https://elibrary.ru/item.asp?id=28169198}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 1
\pages 117--131
\crossref{https://doi.org/10.1137/S0040585X97T988526}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432323500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047155704}
Linking options:
  • https://www.mathnet.ru/eng/tvp5101
  • https://doi.org/10.4213/tvp5101
  • https://www.mathnet.ru/eng/tvp/v62/i1/p145
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024