Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 1, Pages 16–43
DOI: https://doi.org/10.4213/tvp5094
(Mi tvp5094)
 

This article is cited in 8 scientific papers (total in 8 papers)

Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations

V. I. Bogachevabc, A. I. Kirillovd, S. V. Shaposhnikovabc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b St. Tikhon's Orthodox University, Moscow
c National Research University "Higher School of Economics" (HSE), Moscow
d Russian Foundation for Basic Research, Moscow
Full-text PDF (513 kB) Citations (8)
References:
Abstract: This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker–Planck–Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
Keywords: stationary Fokker–Planck–Kolmogorov equation, total variation distance, Kantorovich metric, Prohorov metric, nonlinear Fokker–Planck–Kolmogorov equation.
Funding agency Grant number
Russian Science Foundation 14-11-00196
This work was supported by the Russian Science Foundation at Moscow State University (grant 14-11-00196).
Received: 28.06.2016
Revised: 28.07.2016
Accepted: 10.10.2016
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 1, Pages 12–34
DOI: https://doi.org/10.1137/S0040585X97T988460
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Teor. Veroyatnost. i Primenen., 62:1 (2017), 16–43; Theory Probab. Appl., 62:1 (2018), 12–34
Citation in format AMSBIB
\Bibitem{BogKirSha17}
\by V.~I.~Bogachev, A.~I.~Kirillov, S.~V.~Shaposhnikov
\paper Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 1
\pages 16--43
\mathnet{http://mi.mathnet.ru/tvp5094}
\crossref{https://doi.org/10.4213/tvp5094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3633463}
\zmath{https://zbmath.org/?q=an:1388.60139}
\elib{https://elibrary.ru/item.asp?id=28169189}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 1
\pages 12--34
\crossref{https://doi.org/10.1137/S0040585X97T988460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432323500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047156164}
Linking options:
  • https://www.mathnet.ru/eng/tvp5094
  • https://doi.org/10.4213/tvp5094
  • https://www.mathnet.ru/eng/tvp/v62/i1/p16
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:993
    Full-text PDF :175
    References:90
    First page:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024