Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 1, Pages 122–144
DOI: https://doi.org/10.4213/tvp5091
(Mi tvp5091)
 

On bounds for characteristic functions of the powers of asymptotically normal random variables

Yu. V. Prokhorova, F. Götzeb, V. V. Ulyanovcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Bielefeld University, Department of Mathematics
c Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
d National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: We obtain upper bounds for the absolute values of the characteristic functions of the $k$th powers of asymptotically normal random variables. Estimates are proved for the case when asymptotically normal random variables are normalized sums of independent identically distributed summands with a “regular” distribution. Possible generalizations are considered. The estimates extend the results of previous studies, where for the distributions of the summands, the presence of either a discrete or an absolutely continuous component was required. The proofs of the bounds are based on the stochastic generalization of the I. M. Vinogradov mean value theorem, which is also obtained in the present paper.
Keywords: powers of random variables, bounds for characteristic functions, the Vinogradov mean value theorem, stochastic generalization.
Funding agency Grant number
Russian Science Foundation 14-11-00196
This work was supported by the project of the Russian Science Foundation 14-11-00196, performed at Lomonosov Moscow State University.
Received: 05.09.2016
Accepted: 20.10.2016
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 1, Pages 98–116
DOI: https://doi.org/10.1137/S0040585X97T988514
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. V. Prokhorov, F. Götze, V. V. Ulyanov, “On bounds for characteristic functions of the powers of asymptotically normal random variables”, Teor. Veroyatnost. i Primenen., 62:1 (2017), 122–144; Theory Probab. Appl., 62:1 (2018), 98–116
Citation in format AMSBIB
\Bibitem{ProGotUly17}
\by Yu.~V.~Prokhorov, F.~G\"otze, V.~V.~Ulyanov
\paper On bounds for characteristic functions of the powers of asymptotically normal random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 1
\pages 122--144
\mathnet{http://mi.mathnet.ru/tvp5091}
\crossref{https://doi.org/10.4213/tvp5091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3633468}
\zmath{https://zbmath.org/?q=an:1388.60054}
\elib{https://elibrary.ru/item.asp?id=28169197}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 1
\pages 98--116
\crossref{https://doi.org/10.1137/S0040585X97T988514}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432323500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047108938}
Linking options:
  • https://www.mathnet.ru/eng/tvp5091
  • https://doi.org/10.4213/tvp5091
  • https://www.mathnet.ru/eng/tvp/v62/i1/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :82
    References:58
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024